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Abstract

We study the following biseparable representation of the certainty equivalent:

F (x, y; p) = u−1
(
w(p)u(x) + (1− w(p))u(y)

)
for x ≥ y, p ∈ [0, 1],

where (x, y; p) denotes a binary monetary prospect, u : R → R is a utility function,

and w : [0, 1] → [0, 1] is a probability weighting function. We provide axiomatic

characterizations of this representation over the full domain of binary prospects, as

well as over a restricted domain of simple prospects, in which one of the payoffs is

fixed. Our analysis covers three key cases: the general rank-dependent model, where w

is arbitrary; the rank-independent model, where w satisfies the self-conjugacy condition

w(1 − p) = 1 − w(p) for all p ∈ [0, 1]; and expected utility, where w is the identity

function. Each characterization result is novel and derived from a set of simple axioms,

including one key new axiom in each case. We also discuss the challenges of identifying

such models when data are limited to simple prospects, how these models extend to

general binary prospects, and the implications for empirical model testing.
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1 Introduction

Let (x, y; p) denote a risky prospect that pays x dollars with probability p, and y dollars with

probability 1 − p, and let F (x, y; p) be its certainty equivalent (CE), i.e. the sum of money

for which, in a choice between the money and the prospect, the decision maker is indifferent

between the two. In this article, we are interested in individual preferences that lead to the

following biseparable model of the certainty equivalent

F (x, y; p) = u−1(w(p)u(x) + (1 − w(p))u(y)) for x, y ∈ X, x ≥ y, p ∈ [0, 1], (1)

where X is a real interval, u : X → R is a strictly increasing and continuous function, called

the utility function, and w : [0, 1] → [0, 1] is a strictly increasing function satisfying w(0) = 0

and w(1) = 1, called a probability weighting function.

Note that the function w assigns a weight to the probability associated with the higher

of the two possible payoffs. Therefore, the weight depends not only on the numerical value

of the probability, but also on the rank of the payoff with which it is associated. For this

reason, equation (1) is sometimes referred to as a binary rank-dependent model.

A notable special case arises when the weighting function w is independent of the pay-

off rank. This occurs when w is the identity function, in which case the model reduces to

the certainty equivalent (CE) of the binary expected utility (EU) framework. More gener-

ally, rank-independence holds if the weighting function w is self-conjugate, i.e. satisfies the

following condition:

w(1 − p) = 1 − w(p) for p ∈ [0, 1].

In this paper, we formally characterize equation (1), along with its rank-independent

and binary expected utility (EU) special cases, over the full domain of binary prospects.

In addition, we provide separate characterizations of these models on a restricted domain

of simple prospects—that is, binary prospects where one of the two payoffs is held fixed.

Specifically, for a fixed payoff y0 ∈ X, let (x, p) denote a binary prospect yielding x with

probability p and y0 with probability 1 − p. On this restricted domain, model (1) simplifies

to:

F (x, p) =

{
u−1(w−(p)u(x)) for x < y0, p ∈ [0, 1],

u−1(w+(p)u(x)) for x ≥ y0, p ∈ [0, 1],
(2)

where u is a utility function satisfying u(y0) = 0 and w−, w+ are probability weighting

functions.1

1To see that (1) is an extension (2), suppose that (1) holds for some utility function v and a continuous
probability weighting function w. Fix y0 ∈ X and define u(x) := v(x) − v(y0), w+(p) = w(p) and w−(p) =
1− w(1− p). Then we obtain (2).
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Each of our characterizations is novel and derived from a set of simple axioms, including

a key novel axiom specific to each case. The general rank-dependent model (1) is obtained

from the following distributivity axiom:
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1 − p

(Dist) =
x ⩾ y ⩾ z
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where p, q ∈ (0, 1). This axiom is based on the idea that the sequential evaluation of

independent risks should not depend on the order in which the risks are considered. Suppose

that 1 − q represents the political risk of war, and 1 − p represents the economic risk of low

demand, with the assumption that these risks are independent (i.e., the probability of war

is the same under both high and low demand). Further, suppose that profits do not depend

on the order in which the risks are resolved, and are defined as follows: z in the case of

war, y in the case of peace and low demand, and x in the case of peace and high demand,

with x ≥ y ≥ z. The right-hand side of the (Dist) axiom corresponds to the process

of folding back the decision tree in which the political risk is resolved first, followed by

the economic risk. The left-hand side represents the same process with the order of risks

reversed. Therefore, the equality of the two sides demonstrates that the order of independent

risks in a sequential evaluation process does not affect the outcome.

The ordering of payoffs x ≥ y ≥ z in (Dist) is essential. If the same condition is assumed

without this order restriction—denoted as (Dist)—the resulting model is rank-independent;

that is, (1) holds with a self-conjugate weighting function w. The CE of the binary EU model,

where w is the identity function, follows from an even stronger condition—the following

reduction axiom:

F

y

F

x

y

q

1 − q

p

1 − p

(Red2) F

y
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x

This axiom differs from (Dist) in several respects. First, it involves only two payoffs

instead of three. Second, (Red2) is stronger because unlike in the investor story above, the

two risks it refers to are not required to be independent. If the risks are independent, then

(Red2) ensures that the order in which they are evaluated does not affect the outcome.
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Table 1: Summary of the representations and the key axioms used to derive them

rank-dependent rank-independent EU
prospects general w self-conjugate w w = id

simple (Perm) x (Red)

binary (Dist) (Dist) (Red2)

More importantly, the axiom also holds when the risks are arbitrarily correlated; in this

case, p represents a conditional probability—specifically, the probability of high demand

given peace in our example. The axiom states that sequential evaluation is equivalent to a

one-step, simultaneous evaluation, as shown on the right-hand side of the axiom, where the

decision tree is “folded back” in a single step. Finally, (Red2) differs from (Dist) in that

it imposes no ordering restriction on the payoffs.

The corresponding representations for simple prospects are derived from weaker axioms.

Specifically, the EU representation for simple prospects—that is, model (2) with w+ and w−

as identity functions—is obtained from a weakened version of (Red2), where the arbitrary

payoff y is replaced by a fixed payoff y0. This weaker axiom is denoted by (Red). In fact,

(Red2) can be viewed as a family of (Red) axioms, each applied for a different fixed payoff

y0.

The more general representation (2) with arbitrary probability weighting functions w+

and w− is derived from the following permutability axiom:

F
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y0

F

x

y0

p

1 − p

q

1 − q

=

(Perm) is similar to (Dist), but simpler. It also involves two binary independent2 risks

with probabilities p and q, which are priced sequentially, and the order in which they are

priced does not matter. The difference is that instead of three ordered payoffs, we now have

only two payoffs, one of which is fixed. This makes (Perm) significantly weaker. Table 1

summarizes all characterizations of this paper together with the key axioms used to derive

them.

2To see that the risks are now independent—unlike in (Red2) or (Red)—note that the probabilities p
and q appear in both the first and second branches of the decision tree. This implies that the conditional and
unconditional probabilities of high demand (or peace) must be equal. In other words, the two risks—political
and economic—are uncorrelated.
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1.1 A General Class of Preferences

Model (1) is not only of interest in its own right. Drawing on the idea from Ghirardato

and Marinacci (2001), who introduced biseparable preferences in the context of uncertainty,

we interpret this model as characterizing all risky choice preferences over multi-outcome

prospects that yield certainty equivalents (CEs) consistent with (1) when restricted to bi-

nary prospects. The class of preferences that generate CEs of the form (1) is quite broad. It

includes several popular non-expected utility models that, when applied to binary prospects,

coincide with the rank-dependent utility framework.3 According to (Wakker, 2010, Obser-

vation 7.11. 1) these include, for example, the rank-dependent utility model (Quiggin, 1982;

Chew and Epstein, 1989), the RAM and TAX model (Birnbaum, 2008), disappointment aver-

sion theory (Gul, 1991), the original prospect theory restricted to gains or losses (Kahneman

and Tversky, 1979) or the prospective reference theory (Viscusi, 1989). However, (1) is also

compatible with well-defined intransitive preferences that are not represented by a utility

function. These include, among others, preferences that, on the set of binary prospects, coin-

cide with the range utility theory (Baucells et al., 2024) or range-dependent utility (Kontek

and Lewandowski, 2018). In particular, as shown in Section 3.3, such preferences can in-

corporate the preference reversal phenomenon (Grether and Plott, 1979). Focusing on the

biseparable model (1), we investigate the “common denominator” for all these models.

1.2 Axiomatization on Restricted Domains

Representations for binary prospects are typically derived from representations on a more

general domain. For example, Köbberling and Wakker (2003) discusses ways to obtain binary

representations as a special case of the general rank-dependent utility model, using trade-off

techniques. This ‘general to specific’ approach has some potential drawbacks. Specifically,

axioms that can be stated for any finite number of payoffs sometimes cannot be stated

for a fixed number of payoffs. For instance, the well-known characterizations of the quasi-

arithmetic mean4 (Nagumo, 1930; Kolmogorov, 1930; de Finetti, 1931), are based on axioms

requiring that means be defined for an arbitrary number of payoffs. The replacement axiom

of Kolmogorov (1930) written for two payoffs reduces to a tautology. Similarly, the quasilin-

earity axiom of de Finetti (1931) uses the idea of a mixture of two probability distributions.

While a mixture of two probability distributions with finite support also has finite support,

3Luce and Narens (1985) explore the concepts ofm-point homogeneity and n-point uniqueness for general
scales and find that rank-dependent utility is the most general interval scale for two states of nature. See
also Sokolov (2011).

4A (weighted) quasi-arithmetic mean with a strictly increasing generator is formally equivalent to a CE
of a lottery under the expected utility theory.
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mixing two binary distributions does not have to be binary. In Section 3.2 we show that

stating the axiom of quasilinearity in the domain of binary prospects is nontrivial. Moreover,

we show that even such a binary version of this axiom is still stronger than our reduction

axiom, which is used to characterize the certainty equivalent of a binary prospect under the

expected utility model.

We build on the approach proposed by Aczél (1947). Instead of means defined over an

arbitrary number of payoffs, Aczél was interested in characterizing the mean over a fixed

number of payoffs. He proposed the axiom of bisymmetry to characterize the bivariate

quasilinear mean.5 Following this approach, we design axioms that are minimal in the sense

that they are tailored to the domain of prospects in which the model applies. In this way,

we provide a tool for precisely addressing the problem of extending a given model from a

restricted domain to a wider one. For example, we can determine to what extent we need

to strengthen the axioms in order to extend a biseparable model from the domain of simple

prospects to binary prospects. We address this problem in the discussion that follows our

main results in Sections 2.1 and 2.2.

There are works that follow the approach of Aczél (1947) in characterizing certainty

equivalents of the form (1) or the binary rank-dependent utility model (Luce and Narens,

1985; Pfanzagl, 1959; Miyamoto, 1988; Luce, 1991; Luce and Fishburn, 1991). These papers

use bisymmetry-like conditions (Köbberling and Wakker, 2003, Sections 5.2 and 7), which

are based on the following bisymmetry equation written for certainty equivalents:

F (F (x, y; p), F (z, t; p); q) = F (F (x, z; q), F (y, t; q); p). (3)

The bisymmetry equation (3) shares some basic intuition with (Dist) or (Perm), namely

that in sequential risk evaluation by backward folding and replacing each chance node by

certainty equivalents, the order of evaluation does not matter.

However, our characterizations stand out from those based on bisymmetry in the following

ways. First, our approach is systematic. We offer characterizations of the biseparable model

for both simple and binary prospects; for the general probability weighting function as

well as for the case of expected utility and rank independence. Second, we offer a unified

approach. Each of our characterizations has the same structure based on three conditions:

a natural reflexivity axiom, a regularity (continuity and monotonicity) axiom common to all

axiomatizations, and one new key axiom specific to the given model. With such a simple and

unified structure, it is possible to compare models with each other. For example, comparing

axioms (Perm) and (Dist) tells us how much the condition needs to be strengthened in

5For a given real interval X and a mapping M : X2 → X, bisymmetry holds if M(M(x, y),M(z, t)) =
M(M(x, z),M(y, t)) is true for all (x, y, z, t) ∈ X4.
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order to extend the biseparable model for simple prospects to the set of binary prospects.

Third, our key axioms are minimal, i.e. tailored and adapted to the domain over which the

model is defined. This makes them less complex and easier to test than others. For example,

(Perm) gives a biseparable model on the set of simple prospects. In order to test it, for a

given value of each of its 3 variables (x, p, q) one needs to elicit the certainty equivalents of

4 prospects each with payoffs x, y0, where y0 is a fixed payoff. To extend the biseparable

model to the set of binary prospects, (Dist) requires two additional variables (y, z) and

one additional CE elicitation. In comparison, the bisymmetry equation (3) includes three

additional variables (y, z, t) and two additional CE elicitations.

1.3 Model Identification vs. Model Validation: Implications and

Distinctions

A common practice in descriptive and prescriptive approaches to decision support is to

train a model on a subset of data and then use it to make predictions on data outside of

this subset. In the case of a preference model, the data are provided by participants in

preference elicitation experiments. The most popular models can be identified on a small

subset of their domain. Therefore, to reduce the cognitive load on subjects and minimize

noise, experimental designers most often choose low-complexity task sets. Often, model

parameters are identified using certainty equivalents rather than choice data, because the

former provide point– rather than interval–estimates. For example, Tversky and Kahneman

(1992) use CEs of binary prospects, mostly with a common payoff (simple prospects), to

identify parameters of cumulative prospect theory (see also Gonzalez and Wu, 1999). The

uniqueness parts of our characterization theorems provide an answer to the question of what

data are sufficient to identify model parameters. For example, a rank-dependent utility model

for finite-support prospects can be fully identified using the certainty equivalents of binary

prospects. However, data on only simple prospects, i.e. binary prospects with a fixed payoff,

are insufficient (see Theorem 1a and 1b). These results can help to better design experiments.

In Section 3.1 we discuss the implications of our results for model identification.

A similar technique of using low-complexity tasks is used in the normative application

of Expected Utility theory. The decision maker is asked to make a series of simple choices

(e.g., determining the CEs of binary prospects) in order to identify a utility function that

is ultimately used to predict more complex choices, e.g., choosing between prospects with

multiple payoffs (Gilboa, 2009, p. 87, see also Luce and Raiffa, 1957, Section 2.8). This

approach, in which data from low-complexity tasks are used as input to a model to infer

more complex choices, is reasonable if we know that the model is true in the larger domain.
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This is the case for model identification. However, to validate the model, we need data

drawn from the entire domain. For example, we cannot use data solely for binary prospects

to validate a rank-dependent utility model for prospects with multiple payoffs. These data

confirm the quality of the model only in the set of binary prospects. Some authors seem to

forget this, judging the quality of a model on its entire domain by the quality of the model fit

on a subdomain. Since the vast majority of experimental data on choice under risk involve

binary prospect data, we can make confident judgments about the quality of the model

only for binary prospects. There is no similar consensus for models whose domain includes

prospects with more than two payoffs, because there is much less data on such prospects

and the existing data are not sufficiently conclusive. This further justifies our interest in the

biseparable model.

In the next section, we begin by introducing the model, followed by the presentation of

all five characterization results along with a discussion of their key axioms. The results are

organized as follows: we start with the representation (2) for simple prospects. For this case,

we distinguish between two scenarios depending on whether the fixed outcome y0 lies at the

boundary of the payoff space X or in its interior, each allowing for unrestricted probability

weighting functions w+ and w−. We then derive the special case corresponding to expected

utility. After that, we turn to the representation (1) for binary prospects, beginning with

the most general rank-dependent specification, and then proceeding to the rank-independent

case, concluding with the binary expected utility model.

2 The Main Characterization Results

A binary prospect is a probability measure on a real interval X with a support consisting

of at most two elements. Those elements are called payoffs of a prospect. We let (x, y; p)

denote a binary prospect that pays x and y, with probabilities p and 1 − p, respectively.

Note that

(x, y; p) = (y, x; 1 − p) for x, y ∈ X, p ∈ [0, 1]. (4)

If x = y or p ∈ {0, 1} then the prospect (x, y; p) is called degenerate. Any such prospect

is identified with its payoff. Consequently, (x, x; p) = x holds for all x ∈ X, p ∈ [0, 1], and

(x, y; 1) = x, (x, y; 0) = y hold for all x, y ∈ X. Let ∆(X) denote the set of all binary

prospects. We will also consider families of simple prospects, i.e. binary prospects in which

one payoff is fixed. Given y0 ∈ X, we denote by ∆y0(X) the set of simple prospects of the

form (x, y0; p). Whenever we consider simple prospects, we assume that y0 is known and

constant and we write simple prospects as (x, p).
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The primitive element of our model is the certainty equivalent of a prospect in the

biseparable model, i.e. a functional F : ∆(X) → X having the representation (1) for

(x, y; p) ∈ ∆(X). From now on, a utility function is a strictly increasing and continuous

function u : X → R and a probability weighting function is a strictly increasing function

w : [0, 1] → [0, 1] satisfying w(0) = 0 and w(1) = 1. Our basic axiom common to all

axiomatizations is reflexivity :

(Ref) F (x) = x for all degenerate prospects x ∈ ∆(X).

In all our results, we also impose the following regularity condition.

(CM) F is strictly increasing and continuous in the probability of the higher payoff.

2.1 Characterizations for simple prospects

We first consider representation (1) for simple prospects ∆y0(X), given y0 ∈ X. The key

axiom is permutability,6 which has been graphically presented in Section 1.

(Perm) F (F (x, p); q) = F (F (x, q); p) for x ∈ X and p, q ∈ (0, 1).

We formulate characterization results based on this axiom for the case when y0 is the endpoint

of X and separately for the case where y0 belongs to the interior of X. Proofs of all theorems

in this paper are provided in the Appendix.

Theorem 1a (simple only gains/only losses) Assume y0 is an endpoint of X. A function

F : ∆y0(X) → X satisfies (Ref), (CM), and (Perm) if and only if there exist a continuous

probability weighting function w and a utility function u satisfying u(y0) = 0 such that

F (x, p) = u−1(w(p)u(x)) for x ∈ X, p ∈ [0, 1]. (5)

Furthermore, (5) is satisfied with w replaced by another probability weighting function w̃,

and u replaced by another utility function ũ satisfying ũ(y0) = 0 if and only if there exist

α, r > 0 such that

w̃(p) = w(p)r for p ∈ [0, 1], (6)

|ũ(x)| = α|u(x)|r for x ∈ X. (7)

6The name derives from the fact that the axiom requires the one-parameter set of mappings y = F (x, p)
of X in X to be permutable.
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Theorem 1b (simple gains and losses) Let y0 belong to the interior of X. A function

F : ∆y0(X) → X satisfies (Ref), (CM), and (Perm) if and only if there exist continuous

probability weighting functions w−, w+, and a utility function u satisfying u(y0) = 0 such

that (2) holds, i.e.

F (x, p) =

{
u−1(w−(p)u(x)) for x < y0, p ∈ [0, 1],

u−1(w+(p)u(x)) for x ≥ y0, p ∈ [0, 1].

Furthermore, (2) is satisfied with w−, w+ replaced by another pair of probability weighting

functions w̃−, w̃+, and u replaced by another utility function ũ satisfying ũ(y0) = 0 if and

only if there exist α, β, r−, r+ > 0 such that

w̃−(p) = w−(p)r− for p ∈ [0, 1], (8)

w̃+(p) = w+(p)r+ for p ∈ [0, 1], (9)

and

ũ(x) =

{
−α(−u(x))r− for x < y0,

βu(x)r+ for x ≥ y0.
(10)

We now characterize the special case of (5) or (2) where the probability weighting function

is the identity function. The key axiom in this case is reduction.7

(Red) F (F (x, p), q) = F (x, pq) for x ∈ X, p, q ∈ (0, 1).

Theorem 2 (simple EU) Let y0 ∈ X. A function F : ∆y0(X) → X satisfies (Ref), (CM)

and (Red) if and only if there exists a utility function u satisfying u(y0) = 0 and:

F (x, p) = u−1(pu(x)) for x ∈ X, p ∈ [0, 1]. (11)

Furthermore, (11) is satisfied with u replaced by another utility function ũ satisfying ũ(y0) = 0

if and only if:

• in the case where y0 is the endpoint of X, there exists α > 0 such that

ũ(x) = αu(x) for x ∈ X; (12)

7In the field of functional equations the term translation equation is used. Moszner (1995) gives a survey
of results on its solutions.
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• in the case where y0 is the interior point of X, there exist α, β > 0 such that

ũ(x) =

{
αu(x) for x < y0,

βu(x) for x ≥ y0.
(13)

(Red) is stronger than (Perm). Indeed, (Red) implies (Perm), which can be seen by

applying (Red) on both sides of (Perm), but the opposite is not true.8

2.2 Characterization results for binary prospects

We now characterize the model for all binary prospects. The key axiom we apply in this

case is distributivity.

(Dist) F (F (x, y; p), z; q) = F (F (x, z; q), F (y, z; q); p) for x ≥ y ≥ z, p, q ∈ (0, 1).

Theorem 3 (binary) A function F : ∆(X) → X satisfies the axioms (Ref), (CM), and

(Dist) if and only if there exist a utility function u and a continuous probability weighting

function w, such that (1) holds, i.e.

F (x, y; p) = u−1(w(p)u(x) + (1 − w(p))u(y)) for x ≥ y, p ∈ [0, 1].

Furthermore, (1) is satisfied with u replaced by another utility function ũ, and w replaced

by another probability weighting function w̃ if only if w̃ = w and there exist α, β ∈ R, with
α > 0, such that ũ(x) = αu(x) + β holds for all x ∈ X.

Note that the model of Theorem 3 is an extension of the models of Theorem 1a and 1b.

The representation in (1) gives the form of F (x, y; p) for x ≥ y, i.e. for a given payoff rank.

In other cases we use (4) to get

F (x, y; p) = u−1(w̄(p)u(x) + (1 − w̄(p))u(y)) for x < y, p ∈ [0, 1]. (14)

where w̄ : [0, 1] → [0, 1] is a function defined by

w̄(p) = 1 − w(1 − p) for p ∈ [0, 1].

The formulas in (1) and (14) differ in general because the weight assigned to a given

payoff may depend not only on the probability of that payoff occurring, but also on the rank

8For example, the representation F (x, p) = xw(p), for x ∈ X, p ∈ [0, 1], satisfies (Perm) for any proba-
bility weighting function w satisfying the conditions of Theorem 1b. On the other hand, this representation
satisfies (Red) if and only if w(pq) = w(p)w(q) for all p, q ∈ [0, 1] which is true if and only if w(p) = pα,
p ∈ [0, 1] for some α > 0.
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of the payoff. For example the weight assigned to x equals w(p) if x ≥ y and w̄(p) if x < y.

This is reflected in the (Dist) axiom, which holds for ordered payoffs x ≥ y ≥ z. We thus

say that the model is rank-dependent. Note, however, that the formulas for x ≥ y and x < y,

given by (1) and (14), would coincide if w was self-conjugate, i.e. it satisfied the following

condition

w̄ = w. (15)

We call a biseparable model that meets this condition rank-independent. It can be obtained

by strengthening the (Dist) axiom to hold for any payoffs x, y, z and not just for ordered

payoffs.

(Dist) F (F (x, y; p), z; q) = F (F (x, z; q), F (y, z; q); p) for x, y, z ∈ X, p, q ∈ (0, 1).

We can derive a rank-independent model as a corollary to Theorem 3.

Corollary 1 (rank-independent) A function F : ∆(X) → X satisfies the axioms (Ref),

(CM), and (Dist) if and only if there exist a utility function u and a self-conjugate contin-

uous probability weighting function w, such that

F (x, y; p) = u−1(w(p)u(x) + (1 − w(p))u(y)) for (x, y; p) ∈ ∆(X). (16)

Uniqueness is as in Theorem 3.

Specializing the model further, we now consider the case where the probability weighting

function w is the identity function. The key axiom is now the natural extension of (Red):

(Red2) F (F (x, y; p), y; q) = F (x, y; pq) for x, y ∈ X, p, q ∈ (0, 1).

Theorem 4 (binary EU) A function F : ∆(X) → X satisfies (Ref), (CM) and (Red2)

if and only if there exists a utility function u such that

F (x, y; p) = u−1(pu(x) + (1 − p)u(y)) for (x, y; p) ∈ ∆(X). (17)

Furthermore, (17) is satisfied with u replaced by another utility function ũ if and only if there

are α, β ∈ R, with α > 0, such that

ũ(x) = αu(x) + β for x ∈ X. (18)

It is instructive to compare the key axioms of the models for binary prospects with those

for simple prospects. Note that while the second prospect payoff in (Red) is fixed at y0,

(Red2), in which the corresponding payoff y is arbitrary, is equivalent to the system of
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(Red) for each y0. This stronger axiom is sufficient to extend the simple EU to the binary

EU model. One might think that an analogous generalization of (Perm), the key axiom of

the biseparable model for simple prospects, is sufficient to extend this model from simple

to binary prospects. However, this is not the case. Indeed, consider the following natural

extension of (Perm):

(Perm2) F (F (x, y; p), y; q) = F (F (x, y; q), y; p) for x ≥ y, p, q ∈ (0, 1).

For some utility function ϕ : X → R, the model

F (x, y; p) = y + ϕ−1(pϕ(x− y)), x ≥ y, p ∈ [0, 1] (19)

satisfies (Perm2) but is not biseparable in general. To obtain a biseparable model, one

must use the stronger (Dist) axiom, of which (Perm2) is a special case obtained by setting

z = y in the former. It is obvious that (Perm) is weaker than both of the above axioms

and can be obtained from (Dist) by setting z = y = y0.

Even though (Red) and (Perm) apply on the set of simple, while (Red2), (Perm2)

and (Dist) on the set of binary prospects, it is instructive to compare all of them on the

larger set of all binary prospects ∆(X). The logical relationships between the axioms on this

set are depicted below:

(Dist) +3 (Perm2) ks

��

(Red2)

��
(Perm) (Red)ks

We finish this section with the observation that the regularity axiom (CM) assumes

continuity and monotonicity only with respect to the probability of the higher payoff. Yet,

the representations of Theorems 1a–4 imply stronger versions of continuity and monotonicity.

In fact, F in all these representations is continuous in each of its variables and monotonic

with respect to first-order stochastic dominance (FOSD).9

3 Discussion

We discuss implications of our results for simple prospects for model identification. Next, we

illustrate the advantage of our axioms for binary prospects as compared to axioms deduced

9For any pair of prospects (x, y; p) and (x′, y′, ; p′), where x > y, x′ > y′ and p, p′ ∈ (0, 1) we say that
(x, y; p) dominates (x′, y′; p′) if the following inequalities hold: x ≥ x′, y ≥ y′ and p ≥ p′, and at least one
of these inequalities is strict. We say that F is monotonic with respect to FOSD if F (x, y; p) > F (x′, y′; p′)
holds whenever (x, y; p) dominates (x′, y′; p′). Monotonicity with respect to FOSD thus holds if F is strictly
increasing in payoffs and in the probability of the higher payoff.
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as a special case of the model for general prospects. Finally, we show that the biseparable

model allows for preference reversals while the binary rank-dependent utility model does not.

3.1 On the Identifiability of Models for Simple Prospects

The uniqueness part of Theorem 1b shows that model (2) is only partially identified on

the set of simple prospects. One can think of y0 in simple prospects as a reference point,

relative to which other payoffs are evaluated. Any payoff x above y0 is treated as gain and

any payoff below y0 as loss. The first straightforward implication of Theorem 1b is that the

ratio of utilities for gains and losses (i.e loss aversion) is unidentified and hence the utility

scale consists of two separate scales, one for gains and one for losses. Simple prospects are

insufficient to identify loss aversion, because a simple prospect is either a gain prospect or a

loss prospect, but never a mixed prospect.

Second, Theorem 1b implies that by taking the positive powers of the utility function

and the probability weighting function separately for the gain and loss parts, we obtain an

equivalent representation. This has important consequences in modeling individual attitudes

towards risk. A typical shape for a probability weighting function is an inverted S-shaped

function (Wakker, 2010, p.204), in which (winning) probabilities below a certain threshold

are overweighted and probabilities above the threshold are underweighted. The location of

the threshold, which is the interior fixed point of the probability weighting function, is an

important element in modeling individual attitudes towards risk. Theorem 1b implies that

for simple prospects, which many empirical studies use only (Preston and Baratta, 1948) or

mostly (Tversky and Kahneman, 1992; Gonzalez and Wu, 1999), the threshold cannot be

identified.

To illustrate this, let’s fix y0 ∈ X and assume that F is of the form (2) for some utility

function u such that u(y0) = 0 and probability weighting functions w+, w−. Consider any

point p0 ∈ (0, 1) that is not a fixed point of w+ (the same argument applies also separately

to w− or to w+, w− jointly). Since w+(p0) ∈ (0, 1), for any such point one can find r > 0

such that w+(p0) = pr0. Let’s define a new pair of functions w̃+, ũ by w̃+(p) = w+(p)1/r,

ũ(x) = u(x)1/r for x ≥ y0 and ũ(x) = u(x) for x < y0 which, according to Theorem 1b,

generate an equivalent representation. Note that although p0 is not a fixed point of w+, it

is a fixed point of w̃+:

w̃+(p0) = w+(p0)
1/r = (pr0)

1/r = p0.

In this way, an equivalent representation can be constructed in which the probability weight-

ing function has a fixed point at any desired point in (0, 1). This observation is visually illus-

trated in Figure 1, which shows several equivalent pairs of utility functions and probability

14



weighting functions, each of the latter with a different interior fixed point.

(a) ũ(x) = u(x)r, x ≥ y0 = 0 (b) w̃+(p) = w+(p)
r, r > 0

Figure 1: Three different pairs of functions (ũ, w̃+), each shown in a different color, produce
the same certainty equivalent F (x, p).

Moreover, if u is of the following form:10

u(y) =

{
yα+ for y ≥ 0,

−λ(−y)α− for y < 0,
(20)

for some α+, α− > 0 and λ > 0, then the uniqueness part of Theorem 1b allows us to obtain

an equivalent representation of F (y, p) in which the utility function is piecewise linear with

the loss aversion parameter λ̃ = λ1/α− , i.e. it is of the following form:

ũ(y) =

{
y for y ≥ 0,

λ̃y for y < 0.
(21)

Indeed, it is enough to define w̃+(p) = w+(p)1/α+ , w̃−(p) = w−(p)1/α− for p ∈ [0, 1] and

ũ(y) =

{
u(y)1/α+ for y ≥ 0,

−(−u(y))1/α− for y < 0.

We can specialize the above observation even further if we additionally assume that w+, w−

are Prelec (1998) functions, i.e.

wi(p) =

{
0 for p = 0,

(exp(−(− ln p)γi))βi for p ∈ (0, 1],
(22)

10This a popular form in reference dependent models, where loss aversion plays an important role. Loss
aversion occurs when λ > 1. In what follows, we will fix y0 and normalize payoffs relative to it. So instead
of the original payoff x ∈ X we will use the normalized payoff y := x− y0.
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with some βi > 0 and γi ∈ (0, 1) for i ∈ {+,−}. Then, the following two representations of

F (y, p) given by (2) are equivalent:

• wi(p) = (exp(−(− ln p)γi))βi/αi for p ∈ (0, 1], i ∈ {+,−}, and u is of the form (21).

• wi(p) = exp(−(− ln p)γi) for p ∈ (0, 1] and u is of the following form:

u(y) =

{
yα+/β+ for y ≥ 0,

−λ(−y)α−/β− for y < 0.

It means that we can either set the curvature parameters of the utility function α+, α−

equal to 1, thus making it piecewise linear, or we can set the probability weighting function

parameters β+, β− equal to 1, thus fixing their unique interior fixed point11 at p = exp(−1).

Hence, the necessary and sufficient condition for w−, w+ to be 1-parameter Prelec functions

with a fixed point at p0 = exp(−1) and u to be piecewise-linear, is that α+ = β+ and

α− = β−.

3.2 Illustrating the Domain-Specificity of the Axioms

The important property of all our axioms is that they are defined one the same domain as

the representation they yield. This is not true in many other axiomatizations. For exam-

ple (Ghirardato and Marinacci, 2001, Theorem 3) characterize a biseparable representation

under uncertainty, in which the domain of their key axiom (Weak Certainty Independence)

goes beyond the set of binary acts.

We illustrate this property by comparing our reduction axiom for binary prospects with

the quasilinearity axiom of de Finetti (Hardy et al., 1934, p. 157-163), used as the key

axiom to characterize the quasilinear mean. The quasilinearity axiom is stated for mean

values (denoted by F ) of finite distribution functions (X,Y,Z) on a bounded real interval

[a, b] and their probability mixtures:12

(QL) If F (X) = F (Y), then F (X,Z; q) = F (Y,Z; q) for all Z and q ∈ (0, 1).

Suppose we want to obtain a version of (QL) in the domain of binary prospects. In order

to do it, it does not suffice to restrict X,Y,Z to be binary. However, applying (QL) for

X = (x, y; p), Y = (x′, y; p′) and Z = y where x, x′, y ∈ X, p, p′ ∈ [0, 1], we obtain

11A function of the form (22) with βi = 1 is also called a 1-parameter Prelec function. The interior fixed

point of the function given by (22) is located at p0 = exp

(
−

(
β

1
1−γi

i

))
. For βi = 1 it is thus p0 = exp(−1).

12Note that this axiom can be viewed as the analogue of the independence (also called substitution) axiom
for preferences stated in terms of CEs.
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If F (x, y; p) = F (x′, y; p′), then F (x, y; pq) = F (x′, y; p′q) for q ∈ (0, 1). (23)

Hence, in the domain of binary prospects, (QL) implies (23). Note that if (Ref) is true,

then (Red2) is equivalent to the restricted version of (23) in which p′ = 1, i.e.

If F (x, y; p) = x′ then F (x, y; pq) = F (x′, y; q) for q ∈ (0, 1). (24)

The above argument shows that the version of (QL) for binary prospects is still stronger,

given (Ref), than our domain-specific axiom (Red2). This illustrates that axioms tailored

to a given subdomain of prospects (binary or simple prospects) are more efficient and minimal

than axioms for a larger domain restricted to hold on a smaller domain.

3.3 Modeling Preference Reversals: The Advantage of Certainty

Equivalents

The primitive in our approach is the certainty equivalent. Most often, however, the pref-

erence relation is considered primitive. We say that a real-valued function U on a set of

prospects ∆ represents ≽⊆ ∆2 if X ≽ Y ⇐⇒ U(X) ≥ U(Y) for all X,Y ∈ ∆. Note that if

≽ is transitive and monotonic and a unique CE exists for every prospect, then the Certainty

Equivalent functional F represents ≽. However, there are well-defined nontransitive prefer-

ences that are not represented by any function. Such preferences exhibit preference reversal,

where one prospect is preferred over the other in direct choice but has a lower certainty

equivalent (Lichtenstein and Slovic, 1971; Grether and Plott, 1979; Seidl, 2002). Consider

the following preference13 relation ≽⊂ ∆0(X) × ∆0(X)

(x, p) ≽ (y, q) ⇐⇒ pw−1
(

u(x)
u(max(x,y))

)
≥ qw−1

(
u(y)

u(max(x,y))

)
, (25)

where u : R → R and w : [0, 1] → [0, 1] are strictly increasing and invertible functions

satisfying u(0) = 0 and w(0) = 0, w(1) = 1. This model yields CE of the form (5).

(F (x, p), 1) ∼ (x, p) ⇐⇒ w−1
(

u(F (x,p))
u(x)

)
= p ⇐⇒ F (x, p) = u−1(w(p)u(x)).

Thus the CE yields the following order over prospects:

F (x, p) ≥ F (y, q) ⇐⇒ u(x)

u(y)
≥ w(q)

w(p)
. (26)

13This is a special case of Range Utility Theory (Baucells et al., 2024) for simple prospects in ∆0(X).
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On the other hand, assuming that 0 < x < y and 0 < q < p < 1, we get

(x, p) ≽ (y, q) ⇐⇒ pw−1

(
u(x)

u(y)

)
≥ q ⇐⇒ u(x)

u(y)
≥ w

(
q

p

)
. (27)

Therefore, unless the weighting function w is a power function—which implies w
(

q
p

)
= w(q)

w(p)

for all 0 < q < p < 1—the orderings in (27) and (26) generally differ, and preference reversals

can occur. For example, following (Baucells et al., 2024, Section 3.4), consider the prospects

(x, p) = (40, 0.6) and (y, q) = (70, 0.3), with the utility function defined as

u(x) =

x0.8, x ≥ 0,

−2|x|0.8, x < 0,

and the probability weighting function given by

w(p) =
p0.5

p0.5 + (1 − p)0.5
, p ∈ [0, 1].

Then, the certainty equivalents are F (x, p) = 19 and F (y, q) = 22, yet w
(

q
p

)
= 0.5 ≤ u(x)

u(y)
=

0.64, which implies (x, p) ≽ (y, q) according to (27). This leads to a preference reversal, as

the ranking implied by the certainty equivalents contradicts the ranking given by the direct

preference condition.

The above argument shows that, assuming that CEs exist, the class of preferences gen-

erating CEs of the form (1) is noticeably more general than the preferences in the binary

rank-dependent utility model. This further justifies our focus on the (1) model.

4 Conclusions

In this article, we characterized certainty equivalents of the form (1) for simple and binary

prospects. The results help to understand the limitations of the popular method of eliciting

preferences for simple or binary prospects and extrapolating the results to more complex

prospects, either for descriptive or decision-support purposes. Additionally, our results on the

uniqueness of the representations for simple and binary prospects provide us with guidance

for testing and identifying models on various datasets. These results may be helpful in

designing experiments aimed at eliciting individual attitudes towards risk.

Future research will focus on providing analogous characterization results: a) in the do-

main of ambiguity/uncertainty in which objective probabilities are unknown to the decision

maker, b) for preferences instead of certainty equivalents c) for prospects with more than two
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payouts. Such characterizations should complement knowledge about how much stronger the

conditions should be to extend a given representation for a given domain to a larger domain.

A Proofs

We start with four lemmas that will be used in the proofs of Theorems 1a–4.

Lemma 1 Let I be a real interval and y0 ∈ I be its endpoint. Assume that u1, u2 : I → R
are utility functions with u1(y0) = u2(y0) = 0 and w1, w2 are continuous probability weighting

functions. Then

u−1
1 (w1(p)u1(x)) = u−1

2 (w2(p)u2(x)) for x ∈ I, p ∈ [0, 1], (28)

if and only if there exist α, r ∈ (0,∞) such that

w2(p) = w1(p)r for p ∈ [0, 1], (29)

|u2(x)| = α|u1(x)|r for x ∈ I. (30)

Proof. Standard computations show that (29) and (30) imply (28). For the converse part,

assume that (28) holds. First consider the case when y0 = min I. Replacing in (28) x by

u−1
1 (x) and putting

f := u2 ◦ u−1
1 , (31)

we obtain

f(w1(p)x) = w2(p)f(x) for x ∈ u1(I), p ∈ [0, 1].

Setting x = x0 ∈ u1(I) \ {0} gives

w2(p) =
f(w1(p)x0)

f(x0)
for p ∈ [0, 1] (32)

and so plugging it back yields

f(w1(p)x) =
f(w1(p)x0)

f(x0)
f(x) for x ∈ u1(I), p ∈ [0, 1].

Moreover, as w1 is a continuous probability weighting function, we have w1([0, 1]) = [0, 1].

Thus we get the following Pexider equation on a restricted domain

f(xy) =
f(yx0)

f(x0)
f(x) for (x, y) ∈ u1(I) × [0, 1]. (33)
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Note that as u1 is a utility function and u1(y0) = 0, u1(I) is a real interval having 0 as its left

endpoint. Thus the interior of the domain is an open rectangle contained in (0,∞)2. Hence,

according to (Sobek, 2010, Corollary 2) the solutions of (33) can be uniquely extended to

the solutions of the corresponding Pexider equation on (0,∞)2. So, as f is strictly increasing

and continuous with f(0) = 0, using the standard results (see for example Theorem 13.1.6

of Kuczma, 2008), we conclude that there exist α, r ∈ (0,∞) such that

f(x) = αxr for x ∈ u1(I)

and
f(yx0)

f(x0)
= yr for y ∈ [0, 1].

Hence, in view of (31) and (32), we obtain (30) and (29), respectively, which completes the

proof for the case when y0 = min I.

We now assume that y0 = max I. Let Ĩ := {2y0−x : x ∈ I} and ũi : Ĩ → R for i ∈ {1, 2}
be given by

ũi(x) = −ui(2y0 − x) for x ∈ Ĩ . (34)

Then y0 = min Ĩ and, for i ∈ {1, 2}, ũi is a utility function with ũi(y0) = 0. Moreover, in

view of (28) and (34), we have

ũ−1
1 (w1(p)ũ1(x)) = ũ−1

2 (w2(p)ũ2(x)) for x ∈ Ĩ , p ∈ [0, 1].

Therefore, applying the already proved part, we conclude that there exist α, r ∈ (0,∞) such

that (29) holds and ũ2(x) = αũ1(x)r for x ∈ Ĩ. Hence, taking (34) into account, we get (30)

and the proof is completed.

Lemma 2 Let X = [y0, a) for some a ∈ (y0,∞). Assume that for every b ∈ (y0, a) there

exist a continuous probability weighting function wb and a utility function ub : [y0, b] → R
such that ub(y0) = 0 and

F (x, p) = u−1
b (wb(p)ub(x)) for x ∈ [y0, b], p ∈ [0, 1]. (35)

Then wz = wz′ =: w for z, z′ ∈ (y0, a) and there exists a utility function u : X → R, with
u(y0) = 0, such that (5) holds.

Proof. Let (an : n ∈ N) be a strictly increasing sequence of elements of X such that

limn→∞ an = a. Then, according to (35), for every n ∈ N, we have

u−1
an (wan(p)uan(x)) = u−1

a1
(wa1(p)ua1(x)) for x ∈ [y0, a1], p ∈ [0, 1].
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Hence, applying Lemma 1, we obtain that for every n ∈ N there exist cn, rn ∈ (0,∞) such

that

uan(x) = cnua1(x)rn for x ∈ [y0, a1], n ∈ N (36)

and

wan(p) = w1(p)rn for p ∈ [0, 1], n ∈ N. (37)

From (35) we derive that

u−1
an (wan(p)uan(an)) = u−1

an+1
(wan+1(p)uan+1(an+1)) for n ∈ N, p ∈ [0, 1].

Hence, in view of (37), we get

u−1
an (w1(p)rnuan(an)) = u−1

an+1
(w1(p)rn+1uan+1(an+1)) for n ∈ N, p ∈ [0, 1].

So, taking pn ∈ (0, 1] such that w1(pn) =
(

uan (a1)
uan (an)

) 1
rn

, for any n ∈ N we obtain

(
uan(an)

uan(a1)

) 1
rn

=

(
uan+1(an)

uan+1(a1)

) 1
rn+1

.

Thus, in view of (36), we get

(
uan(an)

cn

) 1
rn

=

(
uan+1(an)

cn+1

) 1
rn+1

for n ∈ N. (38)

Define a function u : X → R in the following way

u(x) = ua1(x) for x ∈ [y0, a1], (39)

u(x) =

(
uan+1(x)

cn+1

) 1
rn+1

for x ∈ (an, an+1], n ∈ N. (40)

From (38)-(40) we derive that, for every n ∈ N, u is continuous on [an, an+1] and so, it

is continuous. Moreover u, being strictly increasing on [an, an+1] for n ∈ N, is strictly

increasing. It follows from (39) that u(y0) = u1(y0) = 0. Finally, taking x ∈ (y0, a) and

setting m := min{n ∈ N : x ≤ an}, in view of (35)-(37), for any p ∈ [0, 1], we obtain

F (x, p) = u−1
bn

(wbn(p)uan(x)) = u−1
an (w1(p)rncnu(x)rn) = u−1(w1(p)u(x)).
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Taking (Ref) into account, we have also

F (y0, p) = F (y0) = y0 = u−1(0) = u−1(w1(p)u(y0)).

In this way we have proved that (5) holds with w := w1, which completes the proof.

Lemma 3 Assume that I is a real interval, u1, u2 : I → R are utility functions and γ, θ ∈
(0, 1). Then

u−1
1 (γu1(x) + (1 − γ)u1(y)) = u−1

2 (θu2(x) + (1 − θ)u2(y)) for x, y ∈ I, x ≥ y. (41)

if and only if γ = θ and there exist α ∈ (0,∞) and β ∈ R such that

u2(x) = αu1(x) + β for x ∈ I. (42)

Proof. The ‘if’ part is standard. We now prove the ‘only if’ part. Assume that (41) holds

and let f be given by (31). Then, as u1 and u2 are utility functions, f is strictly increasing

and continuous. Furthermore, replacing in (41) x and y by u−1
1 (x) and u−1

1 (y), respectively,

we get

f(γx + (1 − γ)y) = θf(x) + (1 − θ)f(y) for x, y ∈ u1(I), x ≥ y. (43)

Let

D : = {(γs, (1 − γ)t) : s, t ∈ u1(I), s ≥ t}.

Then, taking (x, y) ∈ D, we have x = γs and y = (1 − γ)t for some s, t ∈ u1(I) with s ≥ t,

and so applying (43) we obtain

f(x + y) = f(γs + (1 − γ)t) = θf(s) + (1 − θ)f(t) = θf

(
x

γ

)
+ (1 − θ)f

(
y

1 − γ

)
.

Hence, taking D1 := {γs : s ∈ u1(I)} and D2 := {(1 − γ)t : t ∈ u1(I)}, we get

f(x + y) = g(x) + h(y) for (x, y) ∈ D,

where g : D1 → R and h : D2 → R are given by g(x) = θf
(

x
γ

)
for x ∈ D1 and h(y) =

(1 − θ)f
(

y
γ

)
for y ∈ D2, respectively. Note that the above equation is a Pexider equation

on a restricted domain D. Moreover, as u1(I) is an interval, D is a connected subset of R2
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with a nonempty interior. Furthermore

D+ := {x + y : (x, y) ∈ D} = {γs + (1 − γ)t, s, t ∈ u1(I), s ≥ t} = u1(I).

Therefore, applying the extension result of (Radó and Baker, 1987, Corollary 3), we obtain

that there exists an additive mapping a : R → R and a β ∈ R such that f(x) = a(x) + β for

every x belonging to the interior of u1(I). Since f is continuous and strictly increasing, so is

a, and hence, applying the standard argument (cf. e.g. Kuczma, 2008, Theorem 5.5.2), we

get

f(x) = αx + β for x ∈ u1(I),

with some α ∈ (0,∞). Thus, making use of (31), we obtain (42). Furthermore, inserting f

into (43) gives

(θ − γ)(x− y) = 0 for x, y ∈ u1(I), x ≥ y,

which yields θ = γ and completes the proof.

Lemma 4 Assume that for any z in the interior of X there exist a utility function uz :

X≥z → R and a continuous probability weighting function wz such that

F (x, y; p) = u−1
z (wz(p)uz(x) + (1 − wz(p))uz(y)) for x ≥ y ≥ z, p ∈ [0, 1]. (44)

Then wz = wz′ =: w for any z and z′ in the interior of X and there exists a utility function

u : X → R such that (1) holds.

Proof. In view of (44), for any z and z′ in the interior of X, with z < z′, any x, y ∈ X such

that x ≥ y ≥ z′ and every p ∈ [0, 1], we have

u−1
z (wz(p)uz(x) + (1 − wz(p))uz(y)) = u−1

z′ (wz′(p)uz′(x) + (1 − wz′(p))uz′(y))

and so, according to Lemma 3, we get wz = wz′ =: w and

uz(x) = αuz′(x) + β for x ≥ z′ (45)

with some α ∈ (0,∞) and β ∈ R.

Let (an : n ∈ N) be a decreasing sequence of elements of the interior of X such that

limn→∞ an = inf X. Moreover, let a0 ∈ X be such that a1 < a0. It follows from (44) that

u−1
an (uan(an) + w(p)(uan(a0) − uan(an))) = F (a0, an; p)

= u−1
an+1

(uan+1(an) + w(p)(uan+1(a0) − uan+1(an))) for n ∈ N, p ∈ [0, 1].
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Furthermore, as w is a continuous probability weighting function, for every n ∈ N there is a

unique pn ∈ (0, 1) such that w(pn) = uan (a1)−uan (an)
uan (a0)−uan (an)

. Therefore, we have

uan+1(a1) − uan+1(an)

uan+1(a0) − uan+1(an)
=

uan(a1) − uan(an)

uan(a0) − uan(an)
for n ∈ N

and so
uan+1(an) − uan+1(a1)

uan+1(a0) − uan+1(a1)
=

uan(an) − uan(a1)

uan(a0) − uan(a1)
for n ∈ N.

Thus, since for any n ∈ N, uan is a utility function, in view of (47) we get

lim
x→a−n

uan+1(x) − uan+1(a1)

uan+1(a0) − uan+1(a1)
=

uan+1(an) − uan+1(a1)

uan+1(a0) − uan+1(a1)
=

uan(an) − uan(a1)

uan(a0) − uan(a1)
. (46)

Define a function u : X \ {inf X} → R in the following way

u(x) = ua1(x) for x ≥ a1,

u(x) =
uan+1(x) − uan+1(a1)

uan+1(a0) − uan+1(a1)
for x ∈ [an+1, an), n ∈ N. (47)

Then, in view of (46)–(47), for any n ∈ N, we have limx→a−n
u(x) = u(an) , i.e. u is continuous

on [an+1, an] and so, it is continuous. Furthermore, as u is strictly increasing on [an+1, an]

for n ∈ N, it is strictly increasing. Therefore, u is a utility function.

We show that (1) holds. To this end fix x, y ∈ X \{inf X}, with x ≥ y, and p ∈ [0, 1]. Let

m = min{n ∈ N : an ≤ y}, k = min{n ∈ N : an ≤ F (x, y; p)}, and l = min{n ∈ N : an ≤ x}.

Since y ≤ F (x, y; p) ≤ x, we get am ≤ ak ≤ al. Then making use of (45) we obtain that

there exist α, γ ∈ (0,∞) and β, δ ∈ R such that

ual(x) = αuam(x) + β for x ≥ al, (48)

uak(x) = γuam(x) + δ for x ≥ ak. (49)
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Hence, successively applying (47), (49), (44), (48) and again (47), we obtain

u(F (x, y; p)) =
uak(F (x, y; p)) − uak(a1)

uak(a0) − uak(a1)
=

uam(F (x, y; p)) − uam(a1)

uam(a0) − uam(a1)

= w(p)
uam(x) − uam(a1)

uam(a0) − uam(a1)
+ (1 − w(p))

uam(y) − uam(a1)

uam(a0) − uam(a1)

= w(p)
ual(x) − ual(a1)

ual(a0) − ual(a1)
+ (1 − w(p))

uam(y) − uam(a1)

uam(a0) − uam(a1)

= w(p)u(x) + (1 − w(p))u(y)

The proofs of our main Theorems are divided into steps for better readability and clarity.

Proof of Theorem 1a. Note that uniqueness follows directly from Lemma 1. In the ex-

istence part, we only prove the sufficiency of the axioms, because their necessity is obvious.

We assume that F satisfies (Ref), (CM) and (Perm).

Step 1. We show that since y0 is the endpoint of X we may restrict attention to the case

y0 = minX. In fact, suppose that in this case the representation (5) holds. Note that, if

y0 = maxX, then X̃ := {2y0 −x : x ∈ X} is a real interval with y0 = min X̃ and a function

F̃ : ∆y0(X̃) → X̃, given by

F̃ (x, p) = 2y0 − F (2y0 − x, p) for (x, p) ∈ ∆y0(X̃),

satisfies (Ref), (CM) and (Perm). In fact, (Ref) and (Perm) are easy to verify and,

because F is continuous and strictly increasing in payoff, F̃ has the same properties. More-

over, we have 2y0 − x < y0 < x for x ∈ X̃ \ {y0}, and so F is strictly decreasing in the

probability of 2y0 − x. Hence, F̃ is strictly increasing in the probability of x and thus fulfills

(CM). We conclude that there exist a continuous probability weighting function w and a

utility function ũ : X̃ → R satisfying ũ(y0) = 0 such that

F̃ (x, p) = ũ−1(w(p)ũ(x)) for (x, p) ∈ ∆y0(X̃).

Then u : X → R, defined by u(x) = −ũ(2y0 − x) for x ∈ X, is a utility function satisfying

u(y0) = 0 and for any (x, p) ∈ ∆y0(X), we get

F (x, p) = 2y0 − F̃ (2y0 − x, p) = u−1(−w(p)ũ(2y0 − x)) = u−1(w(p)u(x)),

that is the representation (5) holds. From now on we assume that y0 = minX.

Step 2. We show that for any p ∈ (0, 1), F (x, p) is continuous and strictly increasing in x.
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Let p ∈ (0, 1) and x ∈ X. First, assume that x is an interior point of X. Thus, taking

y ∈ X with x < y, we get x = F (y, q) for some q ∈ (0, 1). Furthermore, for any sequence

(xn : n ∈ N) sequence of elements of the interval (y0, y) converging to x there exists a

corresponding sequence (qn : n ∈ N) of elements of (0, 1) such that xn = F (y, qn) for n ∈ N.

Thus, in view of (CM), we get

F (y, q) = x = lim
n→∞

xn = lim
n→∞

F (y, qn) = F (y, lim
n→∞

qn)

and so limn→∞ qn = q. Hence, making use of (Perm) and (CM), we obtain

lim
n→∞

F (xn, p) = lim
n→∞

F (F (y, qn)), p) = lim
n→∞

F (F (y, p)), qn)

= F (F (y, p), q) = F (F (y, q), p) = F (x, p).

If x = y0 or x = maxX then the same reasoning shows a right (left, respectively) continuity

at x. This proves the continuity of F (x, p) in x. We now prove the monotonicity. To this

end fix x1, x2 ∈ X with y0 ≤ x1 < x2. Then, in view of (CM), we get x1 = F (x2, q) for

some q ∈ (0, 1). Hence, applying (Ref), (CM) and (Perm), for every p ∈ (0, 1), we obtain

F (x1, p) = F (F (x2, q), p) = F (F (x2, p), q) < F (F (x2, p), 1) = F (F (x2, p)) = F (x2, p).

Thus F (x, p) is strictly monotone in x for any p ∈ (0, 1).

Step 3. We now derive the representation. If supX ∈ X then put b = supX. Otherwise, let

b be an arbitrary element of the interior of X. It follows from (Ref) that F (b, 0) = F (y0) =

y0 < b = F (b) = F (b, 1). Thus, in view of (CM), for every x ∈ [y0, b] there exists a unique

px ∈ [0, 1] such that F (b, px) = x. Applying the idea in Hosszú (1962) (cf. Aczél, 1966, pp.

270–271), define in (y0, b] a binary operation ⋆ in the following way

x ⋆ y = F (y, px) for x, y ∈ (y0, b]. (50)

First, we show that ⋆ is commutative, associative, cancellative and continuous. To see

that ⋆ is commutative, for any x, y ∈ (y0, b] apply (Perm), to get

x ⋆ y = F (y, px) = F (F (b, py), px) = F (F (b, px), py) = F (x, py) = y ⋆ x.

Using commutativity of ⋆ and (Perm), for every x, y, z ∈ (y0, b], we obtain

x ⋆ (y ⋆ z) = x ⋆ (z ⋆ y) = F (z ⋆ y, px) = F (F (y, pz), px)

26



= F (F (y, px), pz) = F (x ⋆ y, pz) = z ⋆ (x ⋆ y) = (x ⋆ y) ⋆ z,

which proves that ⋆ is associative. To show the cancellativity of ⋆, suppose that x⋆ z = y ⋆ z

for some x, y, z ∈ (y0, b]. Then F (z, px) = F (z, py) and so, taking (Perm) into account, we

get

F (x, pz) = F (F (b, px), pz) = F (F (b, pz), px) = F (z, px)

= F (z, py) = F (F (b, pz), py) = F (F (b, py), pz) = F (y, pz).

Hence, in view of Step 2, we obtain x = y. In this way we have proved that ⋆ is right-

cancellative. By commutativity, ⋆ is also left-cancellative and hence cancellative. Continuity

of ⋆ follows from (CM) and Step 2. Thus we have proved that ⋆ possesses the required

properties. Hence, applying Craigen and Páles (1989), we conclude that there exist an

unbounded real interval I and a continuous bijection f : (y0, b] → I such that

x ⋆ y = f−1(f(x) + f(y)) for x, y ∈ (y0, b]. (51)

Since replacing f by −f does not alter (51), we may assume that f is strictly increasing.

Note that pF (b,p) = p for p ∈ [0, 1], and so it follows from (50) that

F (x, p) = F (b, p) ⋆ x for x ∈ (y0, b], p ∈ (0, 1].

Thus applying (51) on the right hand side yields

F (x, p) = f−1(f(F (b, p)) + f(x)) for x ∈ (y0, b], p ∈ (0, 1], (52)

Setting p = 1 in (52), in view of (Ref), we get

f(b) = 0. (53)

Hence, as f : (y0, b] → I is an increasing bijection and I is unbounded, we conclude that

I = (−∞, 0] and limx→y+0
f(x) = −∞. Therefore, u : [y0, b] → R given by

u(x) =

{
ef(x) for x ∈ (y0, b],

0 for x = y0,
(54)

is a strictly increasing continuous function with u(y0) = 0. Moreover, in view of (CM) and
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(53), w : [0, 1] → [0, 1] defined by

w(p) =

{
ef(F (b,p)) for p ∈ (0, 1],

0 for p = 0,
(55)

is a continuous probability weighting function. From (52), (54) and (55) we derive that

F (x, p) = u−1(w(p)u(x)) for x ∈ [y0, b], p ∈ [0, 1].

If supX ∈ X, this gives a required representation. If supX ̸∈ X, then as b is an arbitrary

element of [y0, a), applying Lemma 2, we get the assertion.

In the sequel, we will use the following notation: X≤y0 := X ∩ (−∞, y0] and X≥y0 :=

X ∩ [y0,∞). Similarly, we set X<y0 := X ∩ (−∞, y0) and X>y0 := X ∩ (y0,∞).

Proof of Theorem 1b. If F : ∆y0(X) → X satisfies (Ref), (CM) and (Perm), then

applying Theorem 1a twice (first with X replaced by X≤y0 , and then with X replaced by

X≥y0), we obtain the existence of continuous probability weighting functions w−, w+ and

utility functions u− : X≤y0 → R and u+ : X≥y0 → R such that u−(y0) = u+(y0) = 0 and

F (x, p) =

{
u−1
− (w−(p)u−(x)) for x < y0, p ∈ [0, 1],

u−1
+ (w+(p)u+(x)) for x ≥ y0, p ∈ [0, 1].

This yields the representation (2) with u : X → R given by

u(x) =

{
u−(x) for x < y0,

u+(x) for x ≥ y0.

Note also that, as u− and u+ are utility functions with u+(y0) = u−(y0) = 0, u is a utility

function with u(y0) = 0. This completes the existence part of the proof.

We now prove uniqueness. Assume that (2) is satisfied with w−, w+ replaced by another

pair of probability weighting functions w̃−, w̃+, and u replaced by another utility function

ũ : X → R satisfying ũ(y0) = 0. Let u− and u+ be the restrictions of u to X≤y0 and X≥y0 ,

respectively. Similarly, let ũ− and ũ+ be the corresponding restrictions of ũ. Then we get

ũ−1
− (w̃−(p)ũ−(x)) = u−1

− (w−(p)u−(x)) for x ∈ X≤y0 , p ∈ [0, 1],

ũ−1
+ (w̃+(p)ũ+(x)) = u−1

+ (w+(p)u+(x)) for x ∈ X≤y0 , p ∈ [0, 1].

Therefore, applying Lemma 1, we obtain that there exist α, β, r−, r+ ∈ (0,∞) such that (8)

28



and (9) hold, ũ−(x) = −α(−u−(x))r− for x ∈ X≤y0 and ũ+(x) = βu+(x)r+ for x ∈ X≥y0 .

Hence, (10) holds which concludes the uniqueness part of the proof of Theorem 1b.

Proof of Theorem 2. The uniqueness part follows from the uniqueness parts of Theorems

1a and 1b in the respective two cases, with the additional restriction that the weighting

functions acting in these theorems are the identity on [0, 1]. We now prove the existence

part. Necessity of the axioms is obvious. In order to prove their sufficiency assume that

(Ref), (CM) and (Red) hold. First assume that y0 is the endpoint of X. Then, as

(Red) implies (Perm), applying Theorem 1a there exist a continuous probability weighting

function w and a utility function u : X → R satisfying u(y0) = 0 such that F is of the form

(5). Plugging it into (Red) we obtain

w(pq) = w(p)w(q) for p, q ∈ [0, 1].

Hence, since w is continuous, by the standard result (see for example Kuczma, 2008, Theorem

13.1.6) there exists α > 0 such that w(p) = pα for p ∈ [0, 1]. Therefore, defining ũ : X → R
by ũ(x) = u(x)1/α for x ∈ X, and taking (5) into account, we conclude that F (x, p) =

ũ−1(pũ(x)) for x ∈ X and p ∈ [0, 1]. This yields the required representation in the case when

y0 is the endpoint of X. If y0 is the interior point of X then, as (Red) implies (Perm),

according to Theorem 1b, F is of the form (2) with some continuous probability weighting

functions w−, w+, and a utility function u : X → R satisfying u(y0) = 0. Similarly as before

we thus obtain that

wi(pq) = wi(p)wi(q) for p, q ∈ [0, 1], i ∈ {+,−},

which yields that wi(p) = pαi , p ∈ [0, 1] for some αi > 0. Hence the required representation

holds with ũ : X → R given by

ũ(x) =

{
−(−u(x))1/α− for x ≤ y0,

u(x)1/α+ for x ≥ y0.
(56)

Proof of Theorem 3. The ‘if’ part of the uniqueness is straightforward. The ‘only if’ part

follows directly from Lemma 3. That the axioms are necessary for the representation is clear.

We now prove their sufficiency. Assume that (Ref), (CM) and (Dist) hold. Let y1 be

an arbitrarily fixed element of the interior of X. The remaining part of the proof is divided

into three steps. In Step 1, we show that the axioms imply a special case of the functional

equation analyzed by Gilányi et al. (2005). In Step 2, we use their solution to establish a

required representation for prospects with payoffs in X≥y1 . Finally, the representation for
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arbitrary prospects in ∆(X) is derived in Step 3.

Step 1. Let y0 be an arbitrary element of X such that y0 < y1. For i ∈ {0, 1} define the

function Fi : ∆yi(X≥yi) → X≥yi by

Fi(x; p) = F (x, yi; p) for (x; p) ∈ ∆yi(X≥yi). (57)

Setting in (Dist) y = z = yi for i ∈ {0, 1}, in view of (Ref), we get

Fi(Fi(x, p); q) = Fi(Fi(x, q); p) for x ∈ X≥yi , p ∈ [0, 1], i ∈ {0, 1}. (58)

Thus, making use of (CM) and applying Theorem 1a, we obtain that for i ∈ {0, 1} there

exist a continuous probability weighting function wi and a utility function vi : X≥yi → R
such that vi(yi) = 0 and

Fi(x; p) = v−1
i (wi(p)vi(x)) for x ∈ X≥yi , p ∈ [0, 1], i ∈ {0, 1}. (59)

Hence v0(y1) > v0(y0) = 0 and so, normalizing v0, we conclude that for v̄0 := v0
v0(y1)

, we have

v̄0(y0) = 0, v̄0(y1) = 1 (60)

and

F0(x; p) = v̄−1
0 (w0(p)v̄0(x)) for x ∈ X≥y0 , p ∈ [0, 1]. (61)

Furthermore, setting in (Dist) z = y0, in view of (57) and (61), we get

v̄−1
0 (w0(q)v̄0(F (x, y; p))) = F (v̄−1

0 (w0(q)v̄0(x)), v̄−1
0 (w0(q)v̄0(y)); p)

for x, y ∈ X≥y0 with x ≥ y and p, q ∈ [0, 1]. Replacing in this equality x and y by v̄−1
0 (x)

and v̄−1
0 (y), respectively, we conclude that

Wp(w0(q)x,w0(q)y) = w0(q)Wp(x, y) for x, y ∈ v̄0(X≥y0), x ≥ y, p, q ∈ [0, 1], (62)

where for any p ∈ [0, 1] a function Wp : v̄0(X≥y0)
2 → R is given by

Wp(x, y) = v̄0(F (v̄−1
0 (x), v̄−1

0 (y); p)) for x, y ∈ v̄0(X≥y0). (63)

Since w0 is a continuous probability weighting function, we have {w0(p) : p ∈ [0, 1]} = [0, 1]
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and so it follows from (62) that

Wp(λx, λy) = λWp(x, y) for x, y ∈ v̄0(X≥y0), x ≥ y, λ ∈ [0, 1], p ∈ [0, 1]. (64)

Moreover, in view of (60), we have 1
v̄0(y)

∈ (0, 1] for y ∈ X≥y1 . Hence, applying (64), for

every x, y ∈ X≥y1 with x ≥ y and p ∈ [0, 1], we obtain

Wp(v̄0(x), v̄0(y)) = v̄0(y)
1

v̄0(y)
Wp(v̄0(x), v̄0(y)) = v̄0(y)Wp

(
v̄0(x)

v̄0(y)
, 1

)
.

Thus, taking (63) into account, for every x, y ∈ X≥y1 , with x ≥ y, and p ∈ [0, 1], we get

F (x, y; p) = v̄−1
0 (Wp(v̄0(x), v̄0(y))) = v̄−1

0

(
v̄0(y)Wp

(
v̄0(x)

v̄0(y)
, 1

))
.

Hence

F (x, y; p) = v̄−1
0

(
v̄0(y)Φp

(
v̄0(x)

v̄0(y)

))
for x, y ∈ X≥y1 , x ≥ y, p ∈ [0, 1], (65)

where, for every p ∈ [0, 1], a function Φp : I → R is given by

Φp(s) = Wp(s, 1) for s ∈ I, (66)

with I := v̄0(X≥y1). Note that, as v̄0 is a utility function and v̄0(y1) = 1, I is a real interval

containing its left endpoint 1. Furthermore, plugging (65) into (Dist) with z = y1, in view

of (57) and (60), for every x, y ∈ X, with x ≥ y ≥ y1 and p, q ∈ [0, 1], we get

Φq

(
v̄0(y)Φp

(
v̄0(x)

v̄0(y)

))
= Φq (v̄0(y)) Φp

(
Φq (v̄0(x))

Φq (v̄0(y))

)
.

Hence, we have

Φq

(
tΦp

(
s
t

))
Φq(t)

= Φp

(
Φq(s)

Φq(t)

)
for s, t ∈ I, s ≥ t, p, q ∈ [0, 1]. (67)

Since v̄0(y1) = 1, applying (66), (63), (57) and (58) successively, we obtain

Φp(s) = Wp(s, 1) = v̄0(F (v̄−1
0 (x), v̄−1

0 (1); p)) = v̄0(F (v̄−1
0 (s), y1; p))

= v̄0(F1(v̄
−1
0 (s); p)) = v̄0(v

−1
1 (w1(p)v1(v̄

−1
0 (s)))) for s ∈ I, p ∈ [0, 1].
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Therefore, setting Φ := v1 ◦ v̄−1
0 , we get

Φp(s) = Φ−1(w1(p)Φ(s)) for s ∈ I, p ∈ [0, 1]. (68)

Note that, as I is an interval containing its left endpoint 1, the interior of I is of the form

(1, d) with some 1 < d ≤ ∞. We show that for any q ∈ [0, 1] and t ∈ (1, d) a function

f(q,t) :
(
1, d

t

)
→ R defined in the following way

f(q,t)(x) =
1

Φ(x)
Φ

(
Φq(tx)

Φq(t)

)
for x ∈

(
1,

d

t

)
, (69)

is constant. Fix q ∈ [0, 1], t ∈ (1, d) and x1, x2 ∈
(
1, d

t

)
with x1 < x2. Let s ∈ (tx2, d). Then

xi <
s
t

for i ∈ {1, 2} and so, as Φ is strictly increasing, with Φ(1) = (v1◦v̄−1
0 )(1) = v1(y1) = 0,

we have Φ(xi)

Φ( s
t )

∈ (0, 1) for i ∈ {1, 2}. Thus, since w1, being a continuous probability weighting

function, is onto [0, 1], for i ∈ {1, 2} there exists pi ∈ (0, 1) such that w1(pi) = Φ(xi)

Φ( s
t )

. Hence,

in view of (68), for i ∈ {1, 2}, we get

Φps

(s
t

)
= Φ−1

(
w1(p1)Φ

(s
t

))
= xi

and

(Φ ◦ Φpi)

(
Φq(s)

Φq(t)

)
= w1(pi)Φ

(
Φq(s)

Φq(t)

)
=

Φ
(

Φq(s)

Φq(t)

)
Φ
(
s
t

) Φ(xi).

Applying Φ on both sides of (67) with p = pi, and making use of the above two equalities

we obtain

1

Φ(xi)
Φ

(
Φq(txi)

Φq(t)

)
=

Φ
(

Φq(s)

Φq(t)

)
Φ
(
s
t

) for i ∈ {1, 2}.

Thus, taking (69) into account, we conclude that f(q,t)(x1) = f(q,t)(x2), and hence f(q,t) is

constant, say f(q,t)(x) = c(q, t) for x ∈
(
1, d

t

)
, with some c(q, t) ∈ R. So, in view of (69), for

any q ∈ [0, 1], t ∈ (1, d) and x ∈
(
1, d

t

)
, we have

c(q, t) =
1

Φ(x)
Φ

(
Φq(tx)

Φq(t)

)
>

Φ(1)

Φ(x)
= 0

and

Φ

(
Φq(tx)

Φq(t)

)
= c(q, t)Φ(x).
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Therefore, for any q ∈ [0, 1], we obtain

Ψ(Hq(ln t) −Hq(ln t + lnx)) = Gq(ln t) + Ψ(ln x) for t, x ∈ (1, d), tx ∈ (1, d),

where Gq, Hq,Ψ : (0, ln d) → R are given by

Hq(z) = − ln Φq(e
z) for z ∈ (0, ln d), (70)

Gq(z) = ln c(q, ez) for z ∈ (0, ln d), (71)

Ψ(y) = ln Φ(ey) for y ∈ (0, ln d), (72)

with a convention ln∞ = ∞. Thus, for every q ∈ [0, 1], we have

Hq(z) −Hq(z + y) = Ψ−1 (Gq(z) + Ψ(y)) for z, y ∈ (0, ln d), z + y ∈ (0, ln d). (73)

Note that, since Φ and Φq for q ∈ (0, 1) are continuous, it follows from (70) and (72) that so

are Ψ and Hq for q ∈ (0, 1). Thus, in view of (73), Gq is continuous for any q ∈ (0, 1).

Step 2. Equation (73) is a particular case of the functional equation analyzed by Gilányi

et al. (2005). Thus, according to their Theorem 2, for every q ∈ [0, 1], Gq is either constant

or it is strictly monotone. We will first consider the case where Gq is strictly monotone for

some q ∈ [0, 1], and then the case where Gq is constant for every q ∈ [0, 1].

Assume that Gq is strictly monotone for some q ∈ [0, 1]. Then, as Ψ is strictly increasing,

according to (Gilányi et al., 2005, Theorem 2), either there exist α ∈ R \ {0}, β ∈ (0,∞)

and γ ∈ R such that

Ψ(x) = β ln
∣∣1 − e−αx

∣∣+ γ for x ∈ (0, ln d), (74)

or there exist β ∈ (0,∞) and γ ∈ R such that

Ψ(x) = β lnx + γ for x ∈ (0, ln d). (75)

If (74) holds, then as ϕ is continuous with Φ(1) = 0, in view of (72), we get

Φ(x) = eγ
∣∣1 − x−α

∣∣β for x ∈ I.

Therefore, considering separately the case of α negative and then α positive and in each of

them applying first (68) and then (65), for every x, y ∈ X≥y1 with x ≥ y and p ∈ [0, 1], we
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get

F (x, y; p) = v̄−1
0

((
w1(p)

1
β v̄0(x)−α + (1 − w1(p)

1
β )v̄0(y)−α

)− 1
α

)
. (76)

Define w := w
1
β

1 and u0 : X≥y1 → R as

u0(x) = |v̄0(x)−α − 1| for x ∈ X≥y1 .

Then w is a continuous probability weighting function and u0 is a utility function with

u0(y1) = 0. Furthermore, in view of (76), we have

F (x, y; p) = u−1
0 (w(p)u0(x) + (1 − w(p))u0(y)) for x ≥ y ≥ y1, p ∈ [0, 1]. (77)

If (75) holds, then the functional equation (73) becomes

Hq(z) −Hq(z + y) = e
1
β
Gq(z)y for z, y ∈ (0, ln d), z + y < ln d. (78)

Since Hq is continuous and Hq(0) = 0, it follows from (78) that

Hq(y)

y
= − lim

z→0+
e

1
β
Gq(z) =: a for y ∈ (0, ln d).

Therefore Hq(y) = ay for y ∈ (0, ln d) and so from (78) we derive that e
1
β
Gq(z) = −a for

z ∈ (0, ln d), which contradicts the strict monotonicity of Gq.

We now consider the case where Gq is constant for every q ∈ [0, 1]. Then, as for every

q ∈ [0, 1], Hq is a strictly decreasing continuous function with Hq(0) = 0, applying again

(Gilányi et al., 2005, Theorem 2), we conclude that for every q ∈ [0, 1] there exists a w(q) ∈
(0,∞) such that Hq(x) = −w(q)x for x ∈ (0, ln d). Thus, in view of (70) and the fact that

Φq is continuous for every q ∈ [0, 1], we get

Φq(x) = xw(q) for x ∈ I, q ∈ [0, 1]. (79)

Hence, taking (65) into account, we obtain

F (x, y; p) = v̄−1
0

(
v̄0(x)w(p)v̄0(y)1−w(p)

)
for x ≥ y ≥ y1, p ∈ [0, 1].

This yields (77) with u0 : X≥y1 → R given by u0(x) = ln v̄0(x) for x ∈ X≥y1 . Note that u0

is a utility function, with u0(y1) = 0. Moreover, it follows from (CM) and (77) that w is a

continuous probability weighting function.
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This concludes the analysis of all possible cases. In one of them a contradiction was

derived, while in the other two we obtained the required representation (77).

Step 3. Since y1 was an arbitrary element in the interior of X, applying Lemma 4, we

conclude that if inf X /∈ X the representation (1) holds with some utility function u and a

continuous probability weighting function w.

Assume that ℓ := inf X ∈ X. Then, in view of (CM), for every x ∈ X \ {ℓ} and

p ∈ (0, 1), we have F (x, ℓ; p) ∈ X \ {ℓ} and so we get

c := lim
y→ℓ+

u(y) = lim
y→ℓ+

u(F (x, y; p)) − w(p)u(x)

1 − w(p)
=

u(F (x, ℓ; p)) − w(p)u(x)

1 − w(p)
.

Therefore, extending u to X by putting u(ℓ) = c, we conclude that u is a utility function on

X. Furthermore, for every x ∈ X \ {ℓ} and p ∈ (0, 1), we have

F (x, ℓ; p) = u−1(w(p)u(x) + (1 − w(p))c) = u−1(w(p)u(x) + (1 − w(p))u(ℓ)).

Obviously, in view of (Ref), the last equality holds also for x = ℓ or p ∈ {0, 1}. Thus, a

proof of the representation (1) is completed.

Proof of Corollary 1. Necessity of the axioms is obvious. We now prove their sufficiency.

Assume that (Ref), (CM), and (Dist) hold. Since (Dist) implies (Dist), by Theorem 3 we

obtain the existence of a utility function u and a continuous probability weighting function w

such that (1) holds. In view of (14), in order to get the required representation, it is enough

to show that w satisfies (15), i.e. it is self-conjugate. Fix x, y, z ∈ X with x > z > y and

q ∈ [0, 1]. According to (CM) and (Ref) there exists p ∈ (0, 1) such that F (x, y; p) > z.

Then applying (1), we get

F (F (x, y; p), z; q) = u−1(w(q)w(p)u(x) + w(q)(1 − w(p))u(y) + (1 − w(q))u(z)).

Furthermore, using (CM) and (Ref) again, we obtain

y ≤ F (y, z; q) ≤ z ≤ F (x, z; q) ≤ x.

Thus, applying (1) and (14), yields

F (F (x, z; q), F (y, z; q); p)

= u−1(w(p)w(q)u(x)+(1−w(1−q))(1−w(p))u(y)+(w(p)(1−w(q))+(1−w(p)w(1−q))u(z)).
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Therefore, in view of (Dist) we get

(1 − w(p))(w(q) + w(1 − q) − 1)(u(z) − u(y)) = 0.

Since the first and the third part of the above product are strictly positive, the middle

part must be zero. Since q is arbitrary, this proves that w is self-conjugate, which ends the

proof.

Proof of Theorem 4. The uniqueness part is standard. In fact, it follows from Theorem

3. That the axioms are necessary for the existence of the representation is obvious. We now

prove their sufficiency.

Assume that F : ∆(X) → X satisfies (Ref), (CM) and (Red2). Note that (Red2) is

a system of (Red) indexed by y ∈ X. Therefore, according to Theorem 2, for any y ∈ X,

there exists a utility function uy : X → R such that uy(y) = 0 and

F (x, y; p) = u−1
y (puy(x)) for x ∈ X, p ∈ [0, 1]. (80)

If inf X ∈ X then put z = inf X. Otherwise, let z be an arbitrary element of the interior of

X. Then, setting u := uz, in view of (4) and (80), we get

u−1
y (puy(z)) = F (z, y; p) = F (y, z; 1 − p) = u−1((1 − p)u(y)) for y ∈ X, p ∈ [0, 1]. (81)

Since 1 − u(x)
u(y)

∈ (0, 1] for x, y ∈ X with y > x ≥ z, applying (80) in the first equality and

(81) in the third and fifth equalities, we obtain

F (x, y; p) = u−1
y (puy(x))

= u−1
y

(
puy

(
u−1

((
1 −

(
1 − u(x)

u(y)

))
u(y)

)))
= u−1

y

(
puy

(
u−1
y

((
1 − u(x)

u(y)

)
uy(z)

)))
= u−1

y

(
p
(

1 − u(x)
u(y)

)
uy(z)

)
= u−1

((
1 − p

(
1 − u(x)

u(y)

))
u(y)

)
= u−1(pu(x) + (1 − p)u(y)).

Thus, in view of (Ref), we get

F (x, y; p) = u−1(pu(x) + (1 − p)u(y)) for x, y ∈ X≥z,
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which concludes the proof in the case inf X ∈ X. If inf X /∈ X, then the assertion follows

from Lemma 4.

References

Aczél, J. (1947). The notion of mean values. Norske Videnskabers Selskabs Forhan-
dlinger 19 (23), 83–86.

Aczél, J. (1966). Lectures on Functional Equations and Their Applications, Volume 19 of
Mathematics in Science and Engineering. Academic Press.

Baucells, M., M. Lewandowski, and K. Kontek (2024). A contextual range-dependent model
for choice under risk. Journal of Mathematical Psychology 118, 102821.

Birnbaum, M. H. (2008). New tests of cumulative prospect theory and the priority heuristic:
Probability-outcome tradeoff with branch splitting. Judgment and Decision making 3 (4),
304–316.

Chew, S. H. and L. G. Epstein (1989). Axiomatic rank-dependent means. Annals of Opera-
tions Research 19 (1), 299–309.
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