
Biseparable representations of the Certainty
Equivalents

Jacek Chudziak∗, Micha l Lewandowski†

January 22, 2025

Abstract

We consider the following biseparable representation of the certainty equivalent:
F (x, y; p) = u−1(w(p)u(x) + (1 − w(p))u(y)), where (x, y; p) is the binary monetary
prospect, u is the utility function, and w is the probability weighting function. We
provide a simple set of axioms characterizing this form for all binary prospects as well
as for the subset of binary prospects, called simple prospects, in which one of the two
payoffs is fixed. We consider both the case of general w and the case of expected utility,
where w is the identity function. We discuss the extent to which such models can be
identified, the issue of extending these models to a larger number of payoffs, and draw
conclusions for model testing.
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1 Introduction

What we do Let (x, y; p) denote a risky prospect that pays x dollars with probability p,
and y with probability 1− p, and let F (x, y; p) be its certainty equivalent (CE), i.e. the sum
of money for which, in a choice between the money and the prospect, the decision maker is
indifferent between the two. In this article, we are interested in individual preferences that
lead to the following biseparable model of the certainty equivalent

F (x, y; p) = u−1(w(p)u(x) + (1 − w(p))u(y)) for x ≥ y, p ∈ [0, 1]. (1)

where u is a utility function and w a probability weighting function.
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We consider several models in this class. In particular, we characterize (1) in the domain
of all binary prospects, as well as in the subset of simple prospects, i.e., prospects in which
one of the two payoffs is fixed. For both domains, we consider the case of a general probability
weighting function w (corresponding to the CE in the rank-dependent utility model) and
the special case where w is the identity function (CE in the expected utility model). We
also analyze intermediate cases in which w satisfies the condition w(0.5) = 0.5 (CE in
the anticipated utility model of Quiggin, 1982) or a stronger self-conjugacy condition (CE
in the rank-independent utility model). Our characterizations are based on novel axioms.
We discuss their relationship to existing axioms and characterizations. In particular, we
comprehensively state the relation of our key distributivity axiom to known and new axioms
based on the bisymmetry axiom of Aczél (1947). Below we justify why it is worth considering
the model (1) and its special cases.

Preference class The preferences generating CE of the form (1) are very general. In
particular, as shown in section 4.4, they are consistent with the phenomenon of preference
reversals (Grether and Plott, 1979). Even if we rule out such inversions by assuming tran-
sitivity and monotonicity, these preferences, which can then be represented by certainty
equivalents, are still very general. They consist of all preferences that, on the set of binary
prospects, match the binary rank-dependent utility model. 1 Such preferences include many
popular nonexpected preference models, such as, for example, (Wakker, 2010, Observation
7.11. 1): the rank-dependent utility model (Quiggin, 1982; Chew and Epstein, 1989), the
RAM and TAX model (Birnbaum, 2008), the disappointment aversion theory (Gul, 1991),
the original prospect theory restricted to gains or losses (Kahneman and Tversky, 1979), or
the prospective reference theory (Viscusi, 1989). By focusing on the (1) model, we examine
the ”common denominator” for all these models.

Model identification vs. model validation. A common practice in descriptive and
prescriptive approaches to decision support is to “train” a model on a training data set and
then use it to make predictions on a test data set. In the case of a preference model, the
data is provided by human participants in preference elicitation experiments. This data
must be sufficient to identify the model parameters. For example, a rank-dependent utility
model for finite-support prospects can be fully identified using certainty equivalents of binary
prospects. However, data for only simple prospects (binary prospects with a fixed payoff)
are insufficient. In section 4.1 we discuss the implications of some of our results for model
identification on the set of simple and binary prospects.

Most popular models are identifiable on a small subset of their domain. Thus, in order
to reduce the cognitive load on experimental subjects and minimize noise, experimental
designers most often choose low-complexity task sets. Often, model parameters are identified
using certainty equivalents rather than choice data, because the former provide point rather
than interval estimates. For example, Tversky and Kahneman (1992) uses exclusively the
certainty equivalents (CEs) of binary prospects, mostly with one common payoff (simple

1Luce and Narens (1985) investigate the concepts of m-point homogeneity and n-point uniqueness for
general scales and find that rank-dependent utility is the most general interval scale for two states of nature.
See also Sokolov (2011).
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prospects), to identify the parameters of cumulative prospect theory (see also Gonzalez and
Wu, 1999). Similarly, in the normative application of the theory, the decision maker is asked
to make a series of simple choices (e.g., determine the CEs of binary prospects) in order
to identify a given utility model, which is ultimately used to predict more complex choices,
e.g., choosing between prospects with multiple payoffs (Gilboa, 2009, p .87, see also Luce
and Raiffa, 1957, section 2.8).

This approach, in which data from low-complexity tasks are used as input to a model to
infer more complex choices, is reasonable if we know (assume) that the model is true in its
domain. This is the case for model identification. However, for model validation we need
data drawn from the entire domain. For example, we cannot use data exclusively for binary
prospects to validate a rank-dependent utility model for prospects with multiple payoffs.
These data verify the quality of the model only on the set of binary prospects. Some authors
seem to forget this, judging the quality of a model on the entire domain based on the quality
of the model fit on a subdomain. Since the vast majority of experimental data on choice
under risk involve data on choice between binary prospects or their CEs, we can only make
confident judgments about the quality of the model for binary prospects. There is no similar
consensus for models whose domain includes prospects with more than two payoffs, because
there is much less data on such prospects and the existing data are not sufficiently conclusive.
This further justifies our interest in the biseparable model.

Cross-domain model extension Köbberling and Wakker (2003) discusses ways of deriv-
ing characteristizations of a binary rank-dependent utility model as special cases of a general
rank-dependent utility model using trade-off techniques. This approach of deriving a binary
model from a general model, of which the binary model is a special case, has some drawbacks.
In particular, axioms that can be stated for any finite number of payoffs often cannot be
directly stated for a fixed number of them. For example, the well-known characterizations
of the quasi-arithmetic mean, the counterpart of CE, (Nagumo, 1930; Kolmogorov, 1930;
de Finetti, 1931) rely on axioms requiring that the means be defined for an arbitrary num-
ber of payoffs. The replacement axiom of Kolmogorov (1930) written for two payoffs reduces
to a tautology. In turn, the quasilinearity axiom of de Finetti (1931) uses the idea of a mix-
ture of two probability distributions. A mixture of two probability distributions with finite
support also has finite support. However, mixing two binary distributions does not have to
be binary. In section 4.3 we show that writing the axiom of quasilinearity in the domain
of binary prospects (so that the mixtures are also binary) can be nontrivial. Moreover, we
show that even such a binary version of this axiom is still much stronger than our reduction
axiom, which was used to characterize the corresponding model of the certainty equivalent
of the binary expected utility model.

Our approach is based on the characterization concept of Aczél (1947), which instead of
the mean for any number of payoffs, characterized the mean for one specific number of payoffs.
Similarly, we identify minimal axioms for a given domain. In this way, we provide tools for
precisely addressing the problem of extending a given model from a restricted domain to
a broader one. For example, we can specify precisely and by how much the axioms need
to be strengthened to extend a biseparable model from the domain of simple prospects to
binary prospects, or a certainty equivalent model for rank-dependent utility from the domain
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of binary prospects to prospects with multiple payoffs. We address such questions in the
discussion that follows our main results in sections 2.1 and 2.2. In section 4.2 we also discuss
the same issue from the point of view of representations rather than axioms, that is, we
discuss nonbiseparable extensions of a biseparable model.

There are some works that characterize (1) or binary rank-dependent utility model (Pfan-
zagl, 1959; Miyamoto, 1988; Luce, 1991; Luce and Fishburn, 1991). Compared to them, our
work offers characterizations based on new key axioms for the most important cases of bisep-
arable utility model (rank-dependent, rank-independent, anticipated utility, EU) both in the
domain of binary prospects and in the subdomain of simple prospects. This systematic ap-
proach allows addressing the problems of extending models from a smaller domain to a larger
one, comparing the strength of axioms and representations for individual cases, or identifying
models in the domain of simple prospects. An additional advantage is the identification of
one clean key axiom for each representation while maintaining similar regularity conditions.

Article structure The main characterization results are given in section 2. Section 3
contains an in-depth formal analysis of the relations between our axiom of distributivity,
the key axiom of the (1) model, and bisymmetry-like axioms, some of which can be found
in the literature. A discussion covering some implications of the main result for model
identification, nonbiseparable extensions of the biseparable model, as well as the advantages
of the “Aczél (1947)” approach based on certainty equivalents and axioms with the restricted
domain is given in Section 4. Section 5 concludes.

2 Main characterization results

A binary prospect is a probability measure on a real interval X with a support consisting
of at most two elements. Those elements are called payoffs of a prospect. We let (x, y; p)
denote a binary prospect that pays x and y, with probabilities p and 1 − p, respectively.
Note that

(x, y; p) = (y, x; 1 − p) for x, y ∈ R, p ∈ [0, 1]. (2)

If x = y or p ∈ {0, 1} then the prospect (x, y; p) is called degenerate. Any such prospect
is identified with its payoff. Consequently, (x, x; p) = x holds for all x ∈ X, p ∈ [0, 1], and
(x, y; 1) = x, (x, y; 0) = y hold for all x, y ∈ X. Let ∆(X) denote the set of all binary
prospects. We will also consider families of simple prospects, i.e. binary prospects in which
one payoff is set at a certain (known) level. Given y0 ∈ X, we denote by ∆y0(X) the set of
simple prospects of the form (x, y0; p). Whenever we consider simple prospects, we assume
that y0 is known and constant and we write simple prospects as (x, p).

We study the functionals F : ∆(X) → X having the representation (1) for (x, y; p) ∈
∆(X). From now on, a utility function is a strictly increasing and continuous function
u : X → R and a probability weighting function is a strictly increasing function w : [0, 1] →
[0, 1] satisfying w(0) = 0 and w(1) = 1. Our basic axiom common to all axiomatizations is
reflexivity:

(Ref) F (x) = x for all degenerate prospects x ∈ ∆(X).

In most of our results, we also impose the following regularity condition.
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(CM) F is strictly increasing and continuous in the probability of the higher payoff.

2.1 Characterizations for simple prospects

We first consider representation (1) for simple prospects ∆y0(X), given y0 ∈ X. The key
axiom is permutability.2

(Perm) F (F (x, p); q) = F (F (x, q); p), for x ∈ X and p, q ∈ (0, 1).

We formulate characterization results based on this axiom for the case when y0 is the endpoint
of X and separately for the case where y0 belongs to the interior of X. Proofs of all theorems
in this paper are provided in the Appendix.

Theorem 1 (simple only gains/only losses) Assume y0 is an endpoint of X. A function
F : ∆y0(X) → X satisfies (Ref), (CM), and (Perm) if and only if there exist a continuous
probability weighting function w and a utility function u satisfying u(y0) = 0 such that

F (x, p) = u−1(w(p)u(x)) for x ∈ X, p ∈ [0, 1]. (3)

Furthermore, (3) is satisfied with w replaced by another probability weighting function w̃, and
u replaced by another utility function ũ satisfying ũ(y0) = 0 if and only if there exist α, r > 0
such that

w̃(p) = w(p)r for p ∈ [0, 1], (4)

|ũ(x)| = α|u(x)|r for x ∈ X. (5)

Theorem 2 (simple gains and losses) Let y0 belong to the interior of X. A function
F : ∆y0(X) → X satisfies (Ref), (CM), and (Perm) if and only if there exist continuous
probability weighting functions w−, w+, and a utility function u satisfying u(y0) = 0 such
that

F (x, p) =

{
u−1(w−(p)u(x)) for x < y0, p ∈ [0, 1],
u−1(w+(p)u(x)) for x ≥ y0, p ∈ [0, 1].

(6)

Furthermore, (6) is satisfied with w−, w+ replaced by another pair of probability weighting
functions w̃−, w̃+, and u replaced by another utility function ũ satisfying ũ(y0) = 0 if and
only if there exist α, β, r−, r+ > 0 such that

w̃−(p) = w−(p)r− p ∈ [0, 1], (7)

w̃+(p) = w+(p)r+ p ∈ [0, 1], (8)

and

ũ(x) =

{
−α(−u(x))r− for x < y0,

βu(x)r+ for x ≥ y0.
(9)

We now characterize the special case of (3) or (6) where the probability weighting function
is the identity function. The key axiom in this case is reduction.3

2The name derives from the fact that the axiom requires the one-parameter set of mappings y = F (x, p)
of X in X to be permutable.

3In the field of functional equations the term translation equation is used. Moszner (1995) gives a survey
of results on its solutions.
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Figure 1: Graphical representation of (Perm) and (Red) where y0 s fixed.

(Perm)

q
p x

1 − p
y0

1 − q y0

p
q x

1 − q
y0

1 − p y0

(Red)

q
p x

1 − p
y0

1 − q y0

pq x

1 − pq y0

(Red) F (F (x, p), q) = F (x, pq) for x ∈ X, p, q ∈ (0, 1).

Theorem 3 (simple EU) Let y0 ∈ X. A function F : ∆y0(X) → X satisfies (Ref), (CM)
and (Red) if and only if there exists a utility function u satisfying u(y0) = 0 and:

F (x, p) = u−1(pu(x)) for x ∈ X, p ∈ [0, 1]. (10)

Furthermore, (10) is satisfied with u replaced by another utility function ũ satisfying ũ(y0) = 0
if and only if:

• in the case where y0 is the endpoint of X, there exists α > 0 such that

ũ(x) = αu(x) for x ∈ X; (11)

• in the case where y0 is the interior point of X, there exist α, β > 0 such that

ũ(x) =

{
αu(x) for x < y0,
βu(x) for x ≥ y0.

(12)

The two key axioms of Theorems 1, 2 and 3 are graphically depicted on Figure 1. Each of
these graphs shows two equivalent ways of calculating the certainty equivalent of a composite
prospect in the form of a tree. (Perm) can be explained as follows. Bet Ax pays x if event
A occurs and y0 otherwise. Consider two such bets Ax and Bx, where events A and B are
statistically independent. (Perm) states that the following two bets are equivalent

b1 pays the certainty equivalent of Ax if B occurs, and y0 otherwise

b2 pays the certainty equivalent of Bx if A occurs and y0 otherwise.

(Red) is stronger than (Perm) in that it additionally requires that these two bets are
equivalent to the bet (A ∩ B)x. Formally, (Red) implies (Perm), which can be seen by
applying (Red) on both sides of (Perm), but the opposite is not true. For example the
representation

F (x, p) = xw(p), x ∈ X, p ∈ [0, 1]

satisfies (Perm) for any probability weighting function w satisfying the conditions of Theo-
rem 2. On the other hand, this representation satisfies (Red) if and only if w(pq) = w(p)w(q)
for all p, q ∈ [0, 1] which is true if and only if w(p) = pα, p ∈ [0, 1] for some α > 0.
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2.2 Characterization results for binary prospects

We now characterize the model for all binary prospects. The key axiom we apply in this
case is distributivity:

(Dist) F (F (x, y; p), z; q) = F (F (x, z; q), F (y, z; q); p) for x ≥ y ≥ z, p, q ∈ (0, 1).

Theorem 4 (binary) A function F : ∆(X) → X satisfies the axioms (Ref), (CM), and
(Dist) if and only if there exist a utility function u and a continuous probability weighting
function w, such that (1) holds, i.e.

F (x, y; p) = u−1(w(p)u(x) + (1 − w(p))u(y)) for x ≥ y, p ∈ [0, 1].

Furthermore, (1) is satisfied with u replaced by another utility function ũ, and w replaced
by another probability weighting function w̃ if only if w̃ = w and there exist α, β ∈ R, with
α > 0, such that ũ(x) = αu(x) + β holds for all x ∈ X.

The representation in (1) gives the form of F (x, y; p) for x ≥ y, i.e. for a given payoff
rank. In other cases we use (2) to get

F (x, y; p) = u−1((1 − w(1 − p))u(x) + w(1 − p)u(y)) for x < y, p ∈ [0, 1]. (13)

The formulas in (1) and (13) differ in general because the probability weighting function w
is always applied to the probability of a higher payoff. Thus, the weight assigned to a given
payoff depends not only on the probability of that payoff occurring, but also on the rank of
the payoff. This is reflected in the (Dist) axiom, which holds for ordered payoffs x ≥ y ≥ z.
We say that the model is rank-dependent. Note, however, that the formulas for x ≥ y and
x < y, given by (1) and (13), would coincide if w was self-conjugate, i.e. it satisfied the
following condition

w(1 − p) = 1 − w(p) for p ∈ (0, 1). (14)

We call a biseparable model that meets this condition rank-independent. It can be obtained
by strengthening the (Dist) axiom to hold for any payoffs x, y, z and not just for ordered
payoffs.

(Dist) F (F (x, y; p), z; q) = F (F (x, z; q), F (y, z; q); p) for x, y, z ∈ R, p, q ∈ (0, 1).

We can derive a rank-independent model as a corollary to Theorem 4. We only assert
existence of the representation, because its uniqueness follows directly from Theorem 4.

Corollary 1 (rank-independent) A function F : ∆(X) → X satisfies the axioms (Ref),
(CM), and (Dist) if and only if there exist a utility function u and a self-conjugate contin-
uous probability weighting function w, such that

F (x, y; p) = u−1(w(p)u(x) + (1 − w(p))u(y)) for (x, y; p) ∈ ∆(X). (15)

Specializing the model further, we now consider the case where the probability weighting
function w is the identity function. The key axiom is now the natural extension of (Red):

(Red2) F (F (x, y; p), y; q) = F (x, y; pq) for x, y ∈ X, p, q ∈ (0, 1).
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Figure 2: Graphical representation of (Dist) and (Red2).

(Dist)
x ≥ y ≥ z
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pq x
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Theorem 5 (binary EU) A function F : ∆(X) → X satisfies (Ref), (CM) and (Red2)
if and only if there exists a utility function u such that

F (x, y; p) = u−1(pu(x) + (1 − p)u(y)) for (x, y; p) ∈ ∆(X). (16)

Furthermore, (16) is satisfied with u replaced by another utility function ũ if and only if there
are α, β ∈ R, with α > 0, such that

ũ(x) = αu(x) + β for x ∈ X. (17)

The key axioms of Theorems 4 and 5 are visually represented in Figure 2. It is instructive
to compare them with the two key axioms of the corresponding representations for simple
prospects. Note that while the second prospect payoff in (Red) is fixed at y0, (Red2), in
which the corresponding payoff y is arbitrary, is equivalent to the system of (Red) for each
y0. This stronger axiom is sufficient to extend the simple EU to the binary EU model. One
might think that an analogous generalization of (Perm), the key axiom of the biseparable
model for simple prospects, is sufficient to extend this model from simple to binary prospects.
However, this is not the case. Indeed, consider the following natural extension of (Perm):

(Perm2) F (F (x, y; p), y; q) = F (F (x, y; q), y; p) for x ≥ y, p, q ∈ (0, 1).

For some utility function ϕ : X → R, the model

F (x, y; p) = y + ϕ−1(pϕ(x− y)), x ≥ y, p ∈ [0, 1] (18)

satisfies (Perm2) but is not biseparable in general. To obtain a biseparable model, one
must use the stronger (Dist) axiom, of which (Perm2) is a special case obtained by setting
z = y in the former. It is obvious that (Perm) is weaker than both of the above axioms
and can be obtained from (Dist) by setting z = y = y0.

Even though (Red) and (Perm) apply on the set of simple, while (Red2), (Perm2)
and (Dist) on the set of binary prospects, it is instructive to compare all of them on the

8



larger set of all binary prospects ∆(X). The logical relationships between the axioms on this
set are depicted below:

(Dist) +3 (Perm2) ks

��

(Red2)

��
(Perm) (Red)ks

We finish this section with the observation that the regularity axiom (CM) assumes
continuity and monotonicity only with respect to the probability of the higher payoff. Yet,
the representations of Theorems 1–5 imply stronger versions of continuity and monotonicity.
In fact, F in all these representations is continuous in each of its variables and monotonic with
respect to first-order stochastic dominance (FOSD). For any pair of prospects (x, y; p) and
(x′, y′, ; p′), where x > y, x′ > y′ and p, p′ ∈ (0, 1) we say that (x, y; p) dominates (x′, y′; p′) if
the following inequalities hold: x ≥ x′, y ≥ y′ and p ≥ p′, and at least one of these inequalities
is strict. We say that F is monotonic with respect to FOSD if F (x, y; p) > F (x′, y′; p′) holds
whenever (x, y; p) dominates (x′, y′; p′). Monotonicity with respect to FOSD thus holds if F
is strictly increasing in payoffs and in the probability of the higher payoff.

3 Distributivity vs. bisymmetry-like axioms

The key axiom of our most general representation (1) is (Dist). This is a new axiom, but it
is most closely related to the bisymmetry-like axioms4, i.e., axioms rooted in the bisymmetry
axiom of Aczél (1947) used to characterize the binary quasi-arithmetic mean. Our goal in
this section is to provide precise formal relations between the axioms (Dist) and (Dist) on
the one hand, and the corresponding versions of the bisymmetry-like axioms. In doing so,
we do not stop at the analysis of the existing axioms, but present an in-depth analysis of
several alternative versions of the bisymmetry-like axioms that give the same representation.
We start by considering the following functional equation for p, q ∈ (0, 1)

F (F (x1, x2; p), F (x3, x4; p); q) = F (F (x1, x3; q), F (x2, x4; q); p) for (x1, x2, x3, x4) ∈ X4.
(19)

(Dist) is a reduced version of (19) supposed to hold for any p, q ∈ (0, 1). Indeed, setting
in (19) x1 = x, x2 = y, x3 = x4 = z and applying (Ref) yields (Dist). For p = q
equation (19) coincides with the bisymmetry axiom of Aczél (1947).5 It turns out that under
the appropriate regularity conditions, it yields the same (rank-independent) version of the
biseparable model as the (Dist) axiom. Likewise, fixing one probability in (19) and letting
only one vary, also yields the model with self-conjugate w. More precisely, the following
counterpart of Corollary 1 holds.

Theorem 6 Assume that F : ∆(X) → X satisfies (Ref), is continuous and strictly increas-
ing in each of its payoffs and it is strictly increasing in the probability of the higher payoff.

4Bisymmetry-like axioms is a term used by Köbberling and Wakker (2003, p.395) to refer to axioms such
as multisymmetry (Chew and Epstein, 1989; Quiggin, 1982; Pfanzagl, 1959), act-independence (Ghirardato
and Marinacci, 2001).

5For p = q ∈ (0, 1), defining M : X2 → X by M(x, y) := F (x, y; p) yields the classic bisymmetry equation
M(M(x1, x2),M(x3, x4)) = M(M(x1, x3),M(x2, x4)) for (x1, x2, x3, x4) ∈ X4.
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Then the following statements are pairwise equivalent:

(i) F is of the form (15) with some utility function u and a self-conjugate probability
weighting function w;

(ii) F satisfies (19) for any p ∈ (0, 1) and q = p;

(iii) F satisfies (19) for any p ∈ (0, 1) and some q ∈ (0, 1);6

(iv) F satisfies (19) for any p, q ∈ (0, 1).

Remark 1 Replacing in the statement (iii) “some q ∈ (0, 1)” with “q = 0.5” and applying
the recent result of Burai et al. (2021) we can drop the continuity assumption in Theorem 6.

Remark 2 If F in Theorem 6 additionally satisfies (CM), then w acting in (i) is continuous
and so, in view of Corollary 1, each of the conditions (i)–(iv) is equivalent to (Dist).

Theorem 6 shows that (19), even assumed to hold with natural restrictions in the domain of
probabilities, always yields the rank-independent version of the biseparable model. We will
now focus on restrictions of (19) in the domain of payoffs and identify those that yield a more
general biseparable model. The following result characterizes the anticipated utility model
for binary prospects, in which the probability weighting function w satisfies w(0.5) = 0.5,
but is not necessarily self-conjugate.

Theorem 7 Assume that F : ∆(X) → X satisfies (Ref) and monotonicity with respect to
each of its payoffs. Then the following statements are equivalent:

(i) F is of the form (1) with some utility function u and a probability weighting function
w satisfying w(0.5) = 0.5;

(ii) F satisfies (19) with p = q = 0.5, and

F (F (x1, x2; p), F (x3, x4; p); 0.5) = F (F (x1, x3; 0.5), F (x2, x4; 0.5); p) (20)

for all p ∈ (0, 1) and (x1, x2, x3, x4) ∈ X4 satisfying x1 ≥ x2 and x3 ≥ x4.

Condition (ii) is closely related to the independence axiom of Quiggin and Wakker (1994), the
key axiom in their derivation of the anticipated utility model. We highlight the differences.
Our axiom uses certainty equivalents and applies to binary gambles. We explicitly state that
for p = q = 0.5 (19) holds without payoff restrictions. In Quiggin and Wakker (1994) this
is also the case, but it is hidden in their notation for equal chance binary gambles. This is
what allows us to significantly shorten the proof by using the classic results based on the
bisymmetry axiom of Aczél (1947) that do not assume payoff restrictions. In fact, by using
the result of Burai et al. (2021) we can derive the representation for equal chance binary
prospects and then extend it for all other binary prospects using (20) without assuming
continuity.

6Note that since the roles of p and q in (19) are symmetric, we can fix q without loss of generality.
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Finally, we are interested in relaxing (19) by imposing payoff restrictions that would
yield the general biseparable model (1). In what follows, given A ⊂ X4, we shall say that
F : ∆(X) → X satisfies the bisymmetry equation on A provided

F (F (x1, x2; p), F (x3, x4; p); q) = F (F (x1, x3; q), F (x2, x4; q); p) (21)

holds for any p, q ∈ (0, 1) and (x1, x2, x3, x4) ∈ A. Let Σ be a family of all permutations on
{1, 2, 3, 4}. For any σ ∈ Σ define a rank-ordered payoff space

Aσ = {(x1, x2, x3, x4) ∈ X4 : xσ(1) ≥ xσ(2) ≥ xσ(3) ≥ xσ(4)}.

There are 4! possible rank-ordered payoff spaces corresponding to the elements of Σ. We
partition them into the following three sets:

Σ1 :={σ ∈ Σ : (σ(1) − σ(2))(σ(3) − σ(4)) > 0 and (σ(1) − σ(3))(σ(2) − σ(4)) > 0},
Σ2 :={σ ∈ Σ : (σ(1) − σ(2))(σ(3) − σ(4)) < 0 and (σ(1) − σ(4))(σ(2) − σ(3)) > 0},
Σ3 :={σ ∈ Σ : (σ(1) − σ(4))(σ(2) − σ(3)) < 0 and (σ(1) − σ(3))(σ(2) − σ(4)) < 0}.

We now show that due to the symmetries of the equation (21) combined with (2), if F
satisfies the bisymmetry equation on Aσ′ for some σ′ ∈ Σi, i ∈ {1, 2, 3} then it satisfies the
bisymmetry equation on Aσ for all σ ∈ Σi.

Lemma 1 Let i ∈ {1, 2, 3}. Then, for every σ ∈ Σi, we have

Σ1 ◦ σ := {π ◦ σ : π ∈ Σ1} = Σi. (22)

Lemma 2 Let F : ∆(X) → X and i ∈ {1, 2, 3}. Furthermore, let

Σi(F ) := {σ ∈ Σi : F satisfies the bisymmetry equation on Aσ}.

Then either Σi(F ) = ∅ or Σi(F ) = Σi.

Equipped with Lemma 2, we now show a formal connection between (Dist) and (Dist) on
the one hand, and the bisymmetry equation on different rank-ordered spaces on the other.

Theorem 8 Assume that F : ∆(X) → X satisfies (Ref) and (CM). Then the following
statements are pairwise equivalent:

(i) F is of the form (15) with some utility function u and a self-conjugate continuous
probability weighting function w;

(ii) F satisfies (Dist);

(iii) F satisfies the bisymmetry equation on Aσ for some σ ∈ Σ2;

(iv) F satisfies the bisymmetry equation on Aσ for every σ ∈ Σ2;
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(v) F satisfies the bisymmetry equation on X4.

Theorem 9 Assume that F : ∆(X) → X satisfies (Ref) and (CM). Then the following
statements are pairwise equivalent:

(i) F is of the form (1) with some utility function u and a continuous probability weighting
function w;

(ii) F satisfies (Dist);

(iii) F satisfies the bisymmetry equation on Aσ for some σ ∈ Σ1;

(iv) F satisfies the bisymmetry equation on Aσ for every σ ∈ Σ1;

(v) F satisfies the bisymmetry equation on

A := {(x1, x2, x3, x4) ∈ X4 : (x1 − x2)(x3 − x4) ≥ 0 and (x1 − x3)(x2 − x4) ≥ 0}.

In light of our previous results on the characterization of the general biseparable model and its
rank-independent version using these first axioms, we thus obtain additional characterization
results using the bisymmetric equation. Furthermore, the above theorems emphasize the
special role of the orderings in Σ1 in obtaining the general bisymmetric representation and
the orderings in Σ2 in obtaining its rank-independent version with w being self-conjugate. In
particular, F satisfies the bisymmetry equation on X4 whenever it satisfies the bisymmetry
equation on the payoff space ordered by just one σ ∈ Σ2. This result strengthens Lemma 2.
On the other hand, if F satisfies the bisymmetry equation in the payoff space ordered by
σ ∈ Σ1, then F satisfies the bisymmetry equation on the set A, whose definition, stated in
terms of payoffs rather than payoff orders, simplifies the intuitive interpretation of condition
(v) of Theorem 9.

In fact, consider the prospect (x, y; p). As is evident from the comparison of (1) and
(13), in the general biseparable model, the weight applied to the payoff x depends on its
rank relative to y: it is either w(p) if x ≥ y, or 1 − w(1 − p) if x < y. If payoff ranks in
(21) are unrestricted, it may thus happen that the same payoff is multiplied by w(p) on
the left-hand side and by 1 − w(1 − p) on the right-hand side of the equation. It forces w
to satisfy the self-conjugate condition w(p) = 1 − w(1 − p). The payoff restrictions in A
prohibit this from happening. Consider all p-probability prospects in (21). If payoff pairs
(x1, x2) and (x3, x4), appearing on the left-hand side of (21), are ordered the same, which
is the first condition in the definition of A, then the payoff pair (F (x1, x3; q), F (x2, x4; q)),
which appears on the right-hand of (21), is also ordered the same. Similarly, if payoff pairs
(x1, x3) and (x2, x4), appearing on the right-hand side of (21), are ordered the same, which
is the second condition in the definition of A, then the payoff pair (F (x1, x2; p), F (x3, x4; p)),
which appears on the right-hand of (21), is also ordered the same.
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4 Discussion

We discuss implications of our results for simple prospects for model identification. Then we
illustrate the issue of nonbiseparable extensions of the biseparable model. Next, we illustrate
the advantage of our axioms for binary prospects as compared to axioms deduced as a special
case of the model for general prospects. Finally, we show that the biseparable model allows
for preference reversals while the binary rank-dependent utility model does not.

4.1 Identifiability of the models for simple prospects

The uniqueness part of Theorem 2 shows that model (6) is only partially identified on
the set of simple prospects. It implies in particular that by taking the positive powers of
the utility function and the probability weighting function separately for the gain and loss
parts, we obtain an equivalent representation. This has important consequences in modeling
individual attitudes towards risk. A typical shape for a probability weighting function is an
inverted S-shaped function (Wakker, 2010, p.204), in which (winning) probabilities below a
certain threshold are overweighted and probabilities above the threshold are underweighted.
The location of the threshold, which is the interior fixed point of the probability weighting
function, is an important element in modeling individual attitudes towards risk. Theorem
2 implies that for simple prospects, which many empirical studies use only (Preston and
Baratta, 1948) or mostly (Tversky and Kahneman, 1992; Gonzalez and Wu, 1999), the
threshold cannot be correctly identified. To illustrate this, let’s fix y0 ∈ X and assume that:

F (x, p) = u−1(w(p)u(x)), x ≥ y0, p ∈ [0, 1],

for some utility function u and probability weighting function w. Consider any point p0 ∈
(0, 1) that is not a fixed point of w. Since w(p0) ∈ (0, 1), for any such point one can find
r > 0 such that w(p0) = pr0. Let’s define a new pair of functions w̃, ũ by w̃(p) = w(p)1/r and
ũ(x) = u(x)1/r, which, according to Theorem 2, generate an equivalent representation. Note
that although p0 is not a fixed point of w, it is a fixed point of w̃:

w̃(p0) = w(p0)
1/r = (pr0)

1/r = p0.

In this way, an equivalent representation can be constructed in which the probability weight-
ing function has a fixed point at any point (0, 1). This observation is visually illustrated in
Figure 3, which shows several equivalent pairs of utility functions and probability weighting
functions, each of the latter with a different interior fixed point.

One can think of y0 in simple prospects as a reference point, relative to which other payoffs
are evaluated with payoffs above y0 called gains and payoffs below y0 called losses. Theorem
2 implies that the ratio of utilities for gains and losses (i.e loss aversion) is unidentified and
hence the utility scale consists of two separate scales, one for gains and one for losses. Simple
prospects are insufficient to identify loss aversion, because a simple prospect is either a gain
prospect or a loss prospect, but never a mixed prospect.

In reference dependent models, where loss aversion plays an important role, it is often as-
sumed that the utility function (sometimes also called the value function) takes the following
form:

u(x) =

{
(x− y0)

α, x ≥ y0,
−λ(y0 − x)β, x < y0.
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(a) ũ(x) = u(x)r, x ≥ y0 = 0 (b) w̃+(p) = w+(p)
r, r > 0

Figure 3: Three pairs of ũ, w̃+, each yielding the same F (x, p).

for α, β > 0, where λ > 0 is a loss aversion parameter. Suppose that F (x, p) is given by
(2) with utility function u of the above form and continuous probability weighting functions
for gains and losses given by w+, w−, respectively. Theorem 2 implies that there is an
equivalent representation of F (x, p) in which the utility function is piece-wise linear. Indeed,
define ũ(x) = u(x)1/α for x ≥ y0, ũ(x) = −(−u(x))1/β for x < y0, and w̃+(p) = w+(p)1/α,
w̃−(p) = w−(p)1/β for p ∈ [0, 1]. This generates an equivalent representation of F (x, p) where
ũ is piecewise linear and the new loss aversion parameter is λ′ = λ1/β:

ũ(x) =

{
x− y0, x ≥ y0

λ′(x− y0), x < y0.

4.2 Nonbiseparable extensions of the biseparable model

The problem of extending a given model from a smaller domain to a larger one can be
studied at the level of axioms or at the level of representation. Let us consider the problem
of extending the biseparable model for simple prospects to the biseparable model for binary
prospects at the representation level. Fix y0 ∈ X and consider the (6) model for prospects
(x, p) ∈ ∆y0(X) such that x ≥ y0. This model is a special case of the (1) model. Indeed,
set y = y0 in (1) and replace u with ũ = u − u(y0), which immediately gives F (x, p) =
ũ−1(w(p)ũ(x)) for x ≥ y0.

It shows that (1) is one possible extension of (6). However, there are other extensions as
well, for example:

F (x, y; p) = y + ϕ−1(w(p)ϕ(x− y)), x ≥ y, p ∈ [0, 1]. (23)

Note that (23) coincides with the simple general model (6) on the set of simple prospects.
In fact, taking y0 ∈ X and defining the utility function by u(x) = ϕ(x − y0) for x ∈ X, we
get F (x, y0; p) = u−1(w(p)u(x)) for x ≥ y0, p ∈ [0, 1]. However, (23) differs from the general
binary model (1). uzasadnić, że (23) nie jest biseparowalny na binary, ale jest na simple.

It can be obtained from (6) for any y0 by assuming F (x, y; p) is translative. Indeed, let
F (x, y0; p) = u−1(w(p)u(x)), for some probability weighting function w and utility function
u satisfying u(y0) = 0. Define another utility function by ϕ(x) = u(x + y0), x ∈ X. This
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function satisfies ϕ(0) = 0. Then for x ≥ y, using translativity, we get

F (x, y; p) = y − y0 + F (x− y + y0, y0; p)

= y − y0 + u−1(w(p)u(x− y + y0))

= y + ϕ−1(w(p)ϕ(x− y)).

The conclusion is that the CE models that coincide with (6) on the set of simple prospects
are strictly more general than the CE models that coincide with (1) on the set of binary
prospects. This clearly has implications for model testing.

4.3 The use of the domain-specific axioms

The important property of all our axioms is that they are defined one the same domain as
the representation they yield. This is not true in many other axiomatizations. For exam-
ple (Ghirardato and Marinacci, 2001, Theorem 3) characterize a biseparable representation
under uncertainty, in which the domain of their key axiom (Weak Certainty Independence)
goes beyond the set of binary acts.

We illustrate this property by comparing our reduction axiom for binary prospects with
the quasilinearity axiom of de Finetti (Hardy et al., 1934, p. 157-163), used as the key
axiom to characterize the quasilinear mean. The quasilinearity axiom is stated for mean
values (denoted by F ) of finite distribution functions (X,Y,Z) on a bounded real interval
[a, b] and their probability mixtures:7

(QL) If F (X) = F (Y), then F (X,Z; q) = F (Y,Z; q) for all Z and q ∈ (0, 1).

Suppose we want to obtain a version of (QL) in the domain of binary prospects. In order
to do it, it does not suffice to restrict X,Y,Z to be binary. However, applying (QL) for
X = (x, y; p), Y = (x′, y; p′) and Z = y where x, x′, y ∈ X, p, p′ ∈ [0, 1], we obtain

If F (x, y; p) = F (x′, y; p′), then F (x, y; pq) = F (x′, y; p′q) for q ∈ (0, 1). (24)

Hence, in the domain of binary prospects, (QL) implies (24). Note that if (Ref) is true,
then (Red2) is equivalent to the restricted version of (24) in which p′ = 1, i.e.

If F (x, y; p) = x′ then F (x, y; pq) = F (x′, y; q) for q ∈ (0, 1). (25)

The above argument shows that the version of (QL) for binary prospects is still stronger,
given (Ref), than our domain-specific axiom (Red2). This is an illustration of the general
property that axioms tailored to a given subdomain of prospects (binary or simple prospects)
are more efficient and minimal than axioms obtained by formulating the axiom for the general
domain in the given subdomain.

7Note that this axiom can be viewed as the analogue of the independence (also called substitution) axiom
for preferences stated in terms of CEs.
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4.4 Certainty Equivalents vs. preferences

The primitive in our approach is the certainty equivalent. Most often, however, the preference
relation is considered primitive. If this relation is monotonic (the more certain money the
better), transitive, and there is a certainty equivalent for each prospect, then the certainty
equivalent functional orders prospects in the same way as preferences. However, there are
well-defined preferences that are not representable by any function. Such preferences exhibit
preference reversal, where one prospect is preferred over the other in direct choice but has
a lower certainty equivalent (Lichtenstein and Slovic, 1971; Grether and Plott, 1979; Seidl,
2002). Consider the following preference8 relation ≽⊂ ∆0(X) × ∆0(X)

(x, p) ≽ (y, q) ⇐⇒ pw−1
(

u(x)
u(max(x,y))

)
≥ qw−1

(
u(y)

u(max(x,y))

)
, (26)

where u : R → R and w : [0, 1] → [0, 1] are strictly increasing and invertible functions
satisfying u(0) = 0 and w(0) = 0, w(1) = 1. This model yields CE of the form (3).

(F (x, p), 1) ∼ (x, p) ⇐⇒ w−1
(

u(F (x,p))
u(x)

)
= p ⇐⇒ F (x, p) = u−1(w(p)u(x)).

Thus the CE yields the following order over prospects:

F (x, p) ≥ F (y, q) ⇐⇒ u(x)

u(y)
≥ w(q)

w(p)
.

On the other hand, assuming that 0 < x < y and 0 < q < p < 1, we get

(x, p) ≽ (y, q) ⇐⇒ pw−1

(
u(x)

u(y)

)
≥ q ⇐⇒ u(x)

u(y)
≥ w

(
q

p

)
.

Therefore, unless w is a power function, in which case w
(

q
p

)
= w(q)

w(p)
for each 0 < q < p < 1,

these two orderings differ.
The above argument shows that, assuming that CEs exist, the class of preferences gen-

erating CEs of the form (1) is noticeably more general than the preferences in the binary
rank-dependent utility model. This further justifies our focus on the (1) model.

5 Conclusions

In this article, we characterized certainty equivalents of the form (1) for simple and binary
prospects. The results help to understand the limitations of the popular method of eliciting
preferences for simple or binary prospects and extrapolating the results to more complex
prospects, either for descriptive or decision-support purposes. Additionally, our results on the
uniqueness of the representations for simple and binary prospects provide us with guidance
for testing and identifying models on various datasets. These results may be helpful in
designing experiments aimed at eliciting individual attitudes towards risk.

Future research will focus on providing analogous characterization results: a) in the do-
main of ambiguity/uncertainty in which objective probabilities are unknown to the decision

8This is a special case of Range Utility Theory (Baucells et al., 2024) for simple prospects in ∆0(X).
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maker, b) for preferences instead of certainty equivalents c) for prospects with more than two
payouts. Such characterizations should complement knowledge about how much stronger the
conditions should be to extend a given representation for a given domain to a larger domain.

A Proofs

We start with four lemmas that will be used in the proofs of Theorems 1–4.

Lemma 3 Let I be a real interval and y0 ∈ I be its endpoint. Assume that u1, u2 : I → R
are utility functions with u1(y0) = u2(y0) = 0 and w1, w2 are continuous probability weighting
functions. Then

u−1
1 (w1(p)u1(x)) = u−1

2 (w2(p)u2(x)) for x ∈ I, p ∈ [0, 1], (27)

if and only if there exist α, r ∈ (0,∞) such that

w2(p) = w1(p)r for p ∈ [0, 1], (28)

|u2(x)| = α|u1(x)|r for x ∈ I. (29)

Proof. Standard computations show that (28) and (29) imply (27). For the converse part,
assume that (27) holds. First consider the case when y0 = min I. Replacing in (27) x by
u−1
1 (x) and putting

f := u2 ◦ u−1
1 , (30)

we obtain
f(w1(p)x) = w2(p)f(x) for x ∈ u1(I), p ∈ [0, 1].

Setting x = x0 ∈ u1(I) \ {0} gives

w2(p) =
f(w1(p)x0)

f(x0)
for p ∈ [0, 1] (31)

and so plugging it back yields

f(w1(p)x) =
f(w1(p)x0)

f(x0)
f(x) for x ∈ u1(I), p ∈ [0, 1].

Moreover, as w1 is a continuous probability weighting function, we have w1([0, 1]) = [0, 1].
Thus we get the following Pexider equation on a restricted domain

f(xy) =
f(yx0)

f(x0)
f(x) for (x, y) ∈ u1(I) × [0, 1]. (32)

Note that as u1 is a utility function and u1(y0) = 0, u1(I) is a real interval having 0 as its left
endpoint. Thus the interior of the domain is an open rectangle contained in (0,∞)2. Hence,
according to (Sobek, 2010, Corollary 2) the solutions of (32) can be uniquely extended to
the solutions of the corresponding Pexider equation on (0,∞)2. So, as f is strictly increasing
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and continuous with f(0) = 0, using the standard results (see for example Theorem 13.1.6
of Kuczma, 2008), we conclude that there exist α, r ∈ (0,∞) such that

f(x) = αxr for x ∈ u1(I)

and
f(yx0)

f(x0)
= yr for y ∈ [0, 1].

Hence, in view of (30) and (31), we obtain (29) and (28), respectively, which completes the
proof for the case when y0 = min I.

We now assume that y0 = max I. Let Ĩ := {2y0−x : x ∈ I} and ũi : Ĩ → R for i ∈ {1, 2}
be given by

ũi(x) = −ui(2y0 − x) for x ∈ Ĩ . (33)

Then y0 = min Ĩ and, for i ∈ {1, 2}, ũi is a utility function with ũi(y0) = 0. Moreover, in
view of (27) and (33), we have

ũ−1
1 (w1(p)ũ1(x)) = ũ−1

2 (w2(p)ũ2(x)) for x ∈ Ĩ , p ∈ [0, 1].

Therefore, applying the already proved part, we conclude that there exist α, r ∈ (0,∞) such
that (28) holds and ũ2(x) = αũ1(x)r for x ∈ Ĩ. Hence, taking (33) into account, we get (29)
and the proof is completed.

Lemma 4 Let X = [y0, a) for some a ∈ (y0,∞). Assume that for every b ∈ (y0, a) there
exist a continuous probability weighting function wb and a utility function ub : [y0, b] → R
such that ub(y0) = 0 and

F (x, p) = u−1
b (wb(p)ub(x)) for x ∈ [y0, b], p ∈ [0, 1]. (34)

Then wz = wz′ =: w for z, z′ ∈ (y0, a) and there exists a utility function u : X → R, with
u(y0) = 0, such that (3) holds.

Proof. Let (an : n ∈ N) be a strictly increasing sequence of elements of X such that
limn→∞ an = a. Then, according to (34), for every n ∈ N, we have

u−1
an (wan(p)uan(x)) = u−1

a1
(wa1(p)ua1(x)) for x ∈ [y0, a1], p ∈ [0, 1].

Hence, applying Lemma 3, we obtain that for every n ∈ N there exist cn, rn ∈ (0,∞) such
that

uan(x) = cnua1(x)rn for x ∈ [y0, a1], n ∈ N (35)

and
wan(p) = w1(p)rn for p ∈ [0, 1], n ∈ N. (36)

From (34) we derive that

u−1
an (wan(p)uan(an)) = u−1

an+1
(wan+1(p)uan+1(an+1)) for n ∈ N, p ∈ [0, 1].

Hence, in view of (36), we get

u−1
an (w1(p)rnuan(an)) = u−1

an+1
(w1(p)rn+1uan+1(an+1)) for n ∈ N, p ∈ [0, 1].
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So, taking pn ∈ (0, 1] such that w1(pn) =
(

uan (a1)
uan (an)

) 1
rn

, for any n ∈ N we obtain

(
uan(an)

uan(a1)

) 1
rn

=

(
uan+1(an)

uan+1(a1)

) 1
rn+1

.

Thus, in view of (35), we get(
uan(an)

cn

) 1
rn

=

(
uan+1(an)

cn+1

) 1
rn+1

for n ∈ N. (37)

Define a function u : X → R in the following way

u(x) = ua1(x) for x ∈ [y0, a1], (38)

u(x) =

(
uan+1(x)

cn+1

) 1
rn+1

for x ∈ (an, an+1], n ∈ N. (39)

From (37)-(39) we derive that, for every n ∈ N, u is continuous on [an, an+1] and so, it
is continuous. Moreover u, being strictly increasing on [an, an+1] for n ∈ N, is strictly
increasing. It follows from (38) that u(y0) = u1(y0) = 0. Finally, taking x ∈ (y0, a) and
setting m := min{n ∈ N : x ≤ an}, in view of (34)-(36), for any p ∈ [0, 1], we obtain

F (x, p) = u−1
bn

(wbn(p)uan(x)) = u−1
an (w1(p)rncnu(x)rn) = u−1(w1(p)u(x)).

Taking (Ref) into account, we have also

F (y0, p) = F (y0) = y0 = u−1(0) = u−1(w1(p)u(y0)).

In this way we have proved that (3) holds with w := w1, which completes the proof.

Lemma 5 Assume that I is a real interval, u1, u2 : I → R are utility functions and γ, θ ∈
(0, 1). Then

u−1
1 (γu1(x) + (1 − γ)u1(y)) = u−1

2 (θu2(x) + (1 − θ)u2(y)) for x, y ∈ I, x ≥ y. (40)

if and only if γ = θ and there exist α ∈ (0,∞) and β ∈ R such that

u2(x) = αu1(x) + β for x ∈ I. (41)

Proof. The ‘if’ part is standard. We now prove the ‘only if’ part. Assume that (40) holds
and let f be given by (30). Then, as u1 and u2 are utility functions, f is strictly increasing
and continuous. Furthermore, replacing in (40) x and y by u−1

1 (x) and u−1
1 (y), respectively,

we get
f(γx + (1 − γ)y) = θf(x) + (1 − θ)f(y) for x, y ∈ u1(I), x ≥ y. (42)

Let

D : = {(γs, (1 − γ)t) : s, t ∈ u1(I), s ≥ t}.
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Then, taking (x, y) ∈ D, we have x = γs and y = (1 − γ)t for some s, t ∈ u1(I) with s ≥ t,
and so applying (42) we obtain

f(x + y) = f(γs + (1 − γ)t) = θf(s) + (1 − θ)f(t) = θf

(
x

γ

)
+ (1 − θ)f

(
y

1 − γ

)
.

Hence, taking D1 := {γs : s ∈ u1(I)} and D2 := {(1 − γ)t : t ∈ u1(I)}, we get

f(x + y) = g(x) + h(y) for (x, y) ∈ D,

where g : D1 → R and h : D2 → R are given by g(x) = θf
(

x
γ

)
for x ∈ D1 and h(y) =

(1 − θ)f
(

y
γ

)
for y ∈ D2, respectively. Note that the above equation is a Pexider equation

on a restricted domain D. Moreover, as u1(I) is an interval, D is a connected subset of R2

with a nonempty interior. Furthermore

D+ := {x + y : (x, y) ∈ D} = {γs + (1 − γ)t, s, t ∈ u1(I), s ≥ t} = u1(I).

Therefore, applying the extension result of (Radó and Baker, 1987, Corollary 3), we obtain
that there exists an additive mapping a : R → R and a β ∈ R such that f(x) = a(x) + β for
every x belonging to the interior of u1(I). Since f is continuous and strictly increasing, so is
a, and hence, applying the standard argument (cf. e.g. Kuczma, 2008, Theorem 5.5.2), we
get

f(x) = αx + β for x ∈ u1(I),

with some α ∈ (0,∞). Thus, making use of (30), we obtain (41). Furthermore, inserting f
into (42) gives

(θ − γ)(x− y) = 0 for x, y ∈ u1(I), x ≥ y,

which yields θ = γ and completes the proof.

Lemma 6 Assume that for any z in the interior of X there exist a utility function uz :
X≥z → R and a continuous probability weighting function wz such that

F (x, y; p) = u−1
z (wz(p)uz(x) + (1 − wz(p))uz(y)) for x ≥ y ≥ z, p ∈ [0, 1]. (43)

Then wz = wz′ =: w for any z and z′ in the interior of X and there exists a utility function
u : X → R such that (1) holds.

Proof. In view of (43), for any z and z′ in the interior of X, with z < z′, any x, y ∈ X such
that x ≥ y ≥ z′ and every p ∈ [0, 1], we have

u−1
z (wz(p)uz(x) + (1 − wz(p))uz(y)) = u−1

z′ (wz′(p)uz′(x) + (1 − wz′(p))uz′(y))

and so, according to Lemma 5, we get wz = wz′ =: w and

uz(x) = αuz′(x) + β for x ≥ z′ (44)

with some α ∈ (0,∞) and β ∈ R.
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Let (an : n ∈ N) be a decreasing sequence of elements of the interior of X such that
limn→∞ an = inf X. Moreover, let a0 ∈ X be such that a1 < a0. It follows from (43) that

u−1
an (uan(an) + w(p)(uan(a0) − uan(an))) = F (a0, an; p)

= u−1
an+1

(uan+1(an) + w(p)(uan+1(a0) − uan+1(an))) for n ∈ N, p ∈ [0, 1].

Furthermore, as w is a continuous probability weighting function, for every n ∈ N there is a
unique pn ∈ (0, 1) such that w(pn) = uan (a1)−uan (an)

uan (a0)−uan (an)
. Therefore, we have

uan+1(a1) − uan+1(an)

uan+1(a0) − uan+1(an)
=

uan(a1) − uan(an)

uan(a0) − uan(an)
for n ∈ N

and so
uan+1(an) − uan+1(a1)

uan+1(a0) − uan+1(a1)
=

uan(an) − uan(a1)

uan(a0) − uan(a1)
for n ∈ N.

Thus, since for any n ∈ N, uan is a utility function, in view of (46) we get

lim
x→a−n

uan+1(x) − uan+1(a1)

uan+1(a0) − uan+1(a1)
=

uan+1(an) − uan+1(a1)

uan+1(a0) − uan+1(a1)
=

uan(an) − uan(a1)

uan(a0) − uan(a1)
. (45)

Define a function u : X \ {inf X} → R in the following way

u(x) = ua1(x) for x ≥ a1,

u(x) =
uan+1(x) − uan+1(a1)

uan+1(a0) − uan+1(a1)
for x ∈ [an+1, an), n ∈ N. (46)

Then, in view of (45)–(46), for any n ∈ N, we have limx→a−n
u(x) = u(an) , i.e. u is continuous

on [an+1, an] and so, it is continuous. Furthermore, as u is strictly increasing on [an+1, an]
for n ∈ N, it is strictly increasing. Therefore, u is a utility function.

We show that (1) holds. To this end fix x, y ∈ X \{inf X}, with x ≥ y, and p ∈ [0, 1]. Let
m = min{n ∈ N : an ≤ y}, k = min{n ∈ N : an ≤ F (x, y; p)}, and l = min{n ∈ N : an ≤ x}.
Since y ≤ F (x, y; p) ≤ x, we get am ≤ ak ≤ al. Then making use of (44) we obtain that
there exist α, γ ∈ (0,∞) and β, δ ∈ R such that

ual(x) = αuam(x) + β for x ≥ al, (47)

uak(x) = γuam(x) + δ for x ≥ ak. (48)

Hence, successively applying (46), (48), (43), (47) and again (46), we obtain

u(F (x, y; p)) =
uak(F (x, y; p)) − uak(a1)

uak(a0) − uak(a1)
=

uam(F (x, y; p)) − uam(a1)

uam(a0) − uam(a1)

= w(p)
uam(x) − uam(a1)

uam(a0) − uam(a1)
+ (1 − w(p))

uam(y) − uam(a1)

uam(a0) − uam(a1)

= w(p)
ual(x) − ual(a1)

ual(a0) − ual(a1)
+ (1 − w(p))

uam(y) − uam(a1)

uam(a0) − uam(a1)

= w(p)u(x) + (1 − w(p))u(y)
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The proofs of our main Theorems are divided into steps for better readability and clarity.

Proof of Theorem 1. Note that uniqueness follows directly from Lemma 3. In the exis-
tence part, we only prove the sufficiency of the axioms, because their necessity is obvious.
We assume that F satisfies (Ref), (CM) and (Perm).

Step 1. We show that since y0 is the endpoint of X we may restrict attention to the case
y0 = minX. In fact, suppose that in this case the representation (3) holds. Note that, if
y0 = maxX, then X̃ := {2y0 −x : x ∈ X} is a real interval with y0 = min X̃ and a function
F̃ : ∆y0(X̃) → X̃, given by

F̃ (x, p) = 2y0 − F (2y0 − x, p) for (x, p) ∈ ∆y0(X̃),

satisfies (Ref), (CM) and (Perm). In fact, (Ref) and (Perm) are easy to verify and,
because F is continuous and strictly increasing in payoff, F̃ has the same properties. More-
over, we have 2y0 − x < y0 < x for x ∈ X̃ \ {y0}, and so F is strictly decreasing in the
probability of 2y0 − x. Hence, F̃ is strictly increasing in the probability of x and thus fulfills
(CM). We conclude that there exist a continuous probability weighting function w and a
utility function ũ : X̃ → R satisfying ũ(y0) = 0 such that

F̃ (x, p) = ũ−1(w(p)ũ(x)) for (x, p) ∈ ∆y0(X̃).

Then u : X → R, defined by u(x) = −ũ(2y0 − x) for x ∈ X, is a utility function satisfying
u(y0) = 0 and for any (x, p) ∈ ∆y0(X), we get

F (x, p) = 2y0 − F̃ (2y0 − x, p) = u−1(−w(p)ũ(2y0 − x)) = u−1(w(p)u(x)),

that is the representation (3) holds. From now on we assume that y0 = minX.

Step 2. We show that for any p ∈ (0, 1), F (x, p) is continuous and strictly increasing in x.
Let p ∈ (0, 1) and x ∈ X. First, assume that x is an interior point of X. Thus, taking
y ∈ X with x < y, we get x = F (y, q) for some q ∈ (0, 1). Furthermore, for any sequence
(xn : n ∈ N) sequence of elements of the interval (y0, y) converging to x there exists a
corresponding sequence (qn : n ∈ N) of elements of (0, 1) such that xn = F (y, qn) for n ∈ N.
Thus, in view of (CM), we get

F (y, q) = x = lim
n→∞

xn = lim
n→∞

F (y, qn) = F (y, lim
n→∞

qn)

and so limn→∞ qn = q. Hence, making use of (Perm) and (CM), we obtain

lim
n→∞

F (xn, p) = lim
n→∞

F (F (y, qn)), p) = lim
n→∞

F (F (y, p)), qn)

= F (F (y, p), q) = F (F (y, q), p) = F (x, p).

If x = y0 or x = maxX then the same reasoning shows a right (left, respectively) continuity
at x. This proves the continuity of F (x, p) in x. We now prove the monotonicity. To this
end fix x1, x2 ∈ X with y0 ≤ x1 < x2. Then, in view of (CM), we get x1 = F (x2, q) for
some q ∈ (0, 1). Hence, applying (Ref), (CM) and (Perm), for every p ∈ (0, 1), we obtain

F (x1, p) = F (F (x2, q), p) = F (F (x2, p), q) < F (F (x2, p), 1) = F (F (x2, p)) = F (x2, p).
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Thus F (x, p) is strictly monotone in x for any p ∈ (0, 1).

Step 3. We now derive the representation. If supX ∈ X then put b = supX. Otherwise, let
b be an arbitrary element of the interior of X. It follows from (Ref) that F (b, 0) = F (y0) =
y0 < b = F (b) = F (b, 1). Thus, in view of (CM), for every x ∈ [y0, b] there exists a unique
px ∈ [0, 1] such that F (b, px) = x. Applying the idea in Hosszú (1962) (cf. Aczél, 1966, pp.
270–271), define in (y0, b] a binary operation ⋆ in the following way

x ⋆ y = F (y, px) for x, y ∈ (y0, b]. (49)

First, we show that ⋆ is commutative, associative, cancellative and continuous. To see
that ⋆ is commutative, for any x, y ∈ (y0, b] apply (Perm), to get

x ⋆ y = F (y, px) = F (F (b, py), px) = F (F (b, px), py) = F (x, py) = y ⋆ x.

Using commutativity of ⋆ and (Perm), for every x, y, z ∈ (y0, b], we obtain

x ⋆ (y ⋆ z) = x ⋆ (z ⋆ y) = F (z ⋆ y, px) = F (F (y, pz), px)

= F (F (y, px), pz) = F (x ⋆ y, pz) = z ⋆ (x ⋆ y) = (x ⋆ y) ⋆ z,

which proves that ⋆ is associative. To show the cancellativity of ⋆, suppose that x⋆ z = y ⋆ z
for some x, y, z ∈ (y0, b]. Then F (z, px) = F (z, py) and so, taking (Perm) into account, we
get

F (x, pz) = F (F (b, px), pz) = F (F (b, pz), px) = F (z, px)

= F (z, py) = F (F (b, pz), py) = F (F (b, py), pz) = F (y, pz).

Hence, in view of Step 2, we obtain x = y. In this way we have proved that ⋆ is right-
cancellative. By commutativity, ⋆ is also left-cancellative and hence cancellative. Continuity
of ⋆ follows from (CM) and Step 2. Thus we have proved that ⋆ possesses the required
properties. Hence, applying Craigen and Páles (1989), we conclude that there exist an
unbounded real interval I and a continuous bijection f : (y0, b] → I such that

x ⋆ y = f−1(f(x) + f(y)) for x, y ∈ (y0, b]. (50)

Since replacing f by −f does not alter (50), we may assume that f is strictly increasing.
Note that pF (b,p) = p for p ∈ [0, 1], and so it follows from (49) that

F (x, p) = F (b, p) ⋆ x for x ∈ (y0, b], p ∈ (0, 1].

Thus applying (50) on the right hand side yields

F (x, p) = f−1(f(F (b, p)) + f(x)) for x ∈ (y0, b], p ∈ (0, 1], (51)

Setting p = 1 in (51), in view of (Ref), we get

f(b) = 0. (52)
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Hence, as f : (y0, b] → I is an increasing bijection and I is unbounded, we conclude that
I = (−∞, 0] and limx→y+0

f(x) = −∞. Therefore, u : [y0, b] → R given by

u(x) =

{
ef(x) for x ∈ (y0, b],
0 for x = y0,

(53)

is a strictly increasing continuous function with u(y0) = 0. Moreover, in view of (CM) and
(52), w : [0, 1] → [0, 1] defined by

w(p) =

{
ef(F (b,p)) for p ∈ (0, 1],
0 for p = 0,

(54)

is a continuous probability weighting function. From (51), (53) and (54) we derive that

F (x, p) = u−1(w(p)u(x)) for x ∈ [y0, b], p ∈ [0, 1].

If supX = X, this gives a required representation. If supX ̸∈ X, then as b is an arbitrary
element of [y0, a), applying Lemma 4, we get the assertion.

In the sequel, we will use the following notation: X≤y0 := X ∩ (−∞, y0] and X≥y0 :=
X ∩ [y0,∞). Similarly, we set X<y0 := X ∩ (−∞, y0) and X>y0 := X ∩ (y0,∞).

Proof of Theorem 2. If F : ∆y0(X) → X satisfies (Ref), (CM) and (Perm), then
applying Theorem 1 twice (first with X replaced by X≤y0 , and then with X replaced by
X≥y0), we obtain the existence of continuous probability weighting functions w−, w+ and
utility functions u− : X≤y0 → R and u+ : X≥y0 → R such that u−(y0) = u+(y0) = 0 and

F (x, p) =

{
u−1
− (w−(p)u−(x)) for x < y0, p ∈ [0, 1],

u−1
+ (w+(p)u+(x)) for x ≥ y0, p ∈ [0, 1].

This yields the representation (6) with u : X → R given by

u(x) =

{
u−(x) for x < y0,
u+(x) for x ≥ y0.

Note also that, as u− and u+ are utility functions with u+(y0) = u−(y0) = 0, u is a utility
function with u(y0) = 0. This completes the existence part of the proof.

We now prove uniqueness. Assume that (6) is satisfied with w−, w+ replaced by another
pair of probability weighting functions w̃−, w̃+, and u replaced by another utility function
ũ : X → R satisfying ũ(y0) = 0. Let u− and u+ be the restrictions of u to X≤y0 and X≥y0 ,
respectively. Similarly, let ũ− and ũ+ be the corresponding restrictions of ũ. Then we get

ũ−1
− (w̃−(p)ũ−(x)) = u−1

− (w−(p)u−(x)) for x ∈ X≤y0 , p ∈ [0, 1],

ũ−1
+ (w̃+(p)ũ+(x)) = u−1

+ (w+(p)u+(x)) for x ∈ X≤y0 , p ∈ [0, 1].

Therefore, applying Lemma 3, we obtain that there exist α, β, r−, r+ ∈ (0,∞) such that (7)
and (8) hold, ũ−(x) = −α(−u−(x))r− for x ∈ X≤y0 and ũ+(x) = βu+(x)r+ for x ∈ X≥y0 .
Hence, (9) holds which concludes the uniqueness part of the proof of Theorem 2.
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Proof of Theorem 3. The uniqueness part follows from the uniqueness parts of Theorems
1 and 2 in the respective two cases, with the additional restriction that the weighting func-
tions acting in these theorems are the identity on [0, 1]. We now prove the existence part.
Necessity of the axioms is obvious. In order to prove their sufficiency assume that (Ref),
(CM) and (Red) hold. First assume that y0 is the endpoint of X. Then, as (Red) implies
(Perm), applying Theorem 1 there exist a continuous probability weighting function w and
a utility function u : X → R satisfying u(y0) = 0 such that F is of the form (3). Plugging it
into (Red) we obtain

w(pq) = w(p)w(q) for p, q ∈ [0, 1].

Hence, since w is continuous, by the standard result (see for example Kuczma, 2008, Theorem
13.1.6) there exists α > 0 such that w(p) = pα for p ∈ [0, 1]. Therefore, defining ũ : X → R
by ũ(x) = u(x)1/α for x ∈ X, and taking (3) into account, we conclude that F (x, p) =
ũ−1(pũ(x)) for x ∈ X and p ∈ [0, 1]. This yields the required representation in the case when
y0 is the endpoint of X. If y0 is the interior point of X then, as (Red) implies (Perm),
according to Theorem 2, F is of the form (6) with some continuous probability weighting
functions w−, w+, and a utility function u : X → R satisfying u(y0) = 0. Similarly as before
we thus obtain that

wi(pq) = wi(p)wi(q) for p, q ∈ [0, 1], i ∈ {+,−},

which yields that wi(p) = pαi , p ∈ [0, 1] for some αi > 0. Hence the required representation
holds with ũ : X → R given by

ũ(x) =

{
−(−u(x))1/α− for x ≤ y0,

u(x)1/α+ for x ≥ y0.
(55)

Proof of Theorem 4. The ‘if’ part of the uniqueness is straightforward. The ‘only if’ part
follows directly from Lemma 5. That the axioms are necessary for the representation is clear.

We now prove their sufficiency. Assume that (Ref), (CM) and (Dist) hold. Let y1 be
an arbitrarily fixed element of the interior of X. The remaining part of the proof is divided
into three steps. In Step 1, we show that the axioms imply a special case of the functional
equation analyzed by Gilányi et al. (2005). In Step 2, we use their solution to establish a
required representation for prospects with payoffs in X≥y1 . Finally, the representation for
arbitrary prospects in ∆(X) is derived in Step 3.

Step 1. Let y0 be an arbitrary element of X such that y0 < y1. For i ∈ {0, 1} define the
function Fi : ∆yi(X≥yi) → X≥yi by

Fi(x; p) = F (x, yi; p) for (x; p) ∈ ∆yi(X≥yi). (56)

Setting in (Dist) y = z = yi for i ∈ {0, 1}, in view of (Ref), we get

Fi(Fi(x, p); q) = Fi(Fi(x, q); p) for x ∈ X≥yi , p ∈ [0, 1], i ∈ {0, 1}. (57)

Thus, making use of (CM) and applying Theorem 1, we obtain that for i ∈ {0, 1} there
exist a continuous probability weighting function wi and a utility function vi : X≥yi → R
such that vi(yi) = 0 and

Fi(x; p) = v−1
i (wi(p)vi(x)) for x ∈ X≥yi , p ∈ [0, 1], i ∈ {0, 1}. (58)
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Hence v0(y1) > v0(y0) = 0 and so, normalizing v0, we conclude that for v̄0 := v0
v0(y1)

, we have

v̄0(y0) = 0, v̄0(y1) = 1 (59)

and
F0(x; p) = v̄−1

0 (w0(p)v̄0(x)) for x ∈ X≥y0 , p ∈ [0, 1]. (60)

Furthermore, setting in (Dist) z = y0, in view of (56) and (60), we get

v̄−1
0 (w0(q)v̄0(F (x, y; p))) = F (v̄−1

0 (w0(q)v̄0(x)), v̄−1
0 (w0(q)v̄0(y)); p)

for x, y ∈ X≥y0 with x ≥ y and p, q ∈ [0, 1]. Replacing in this equality x and y by v̄−1
0 (x)

and v̄−1
0 (y), respectively, we conclude that

Wp(w0(q)x,w0(q)y) = w0(q)Wp(x, y) for x, y ∈ v̄0(X≥y0), x ≥ y, p, q ∈ [0, 1], (61)

where for any p ∈ [0, 1] a function Wp : v̄0(X≥y0)
2 → R is given by

Wp(x, y) = v̄0(F (v̄−1
0 (x), v̄−1

0 (y); p)) for x, y ∈ v̄0(X≥y0). (62)

Since w0 is a continuous probability weighting function, we have {w0(p) : p ∈ [0, 1]} = [0, 1]
and so it follows from (61) that

Wp(λx, λy) = λWp(x, y) for x, y ∈ v̄0(X≥y0), x ≥ y, λ ∈ [0, 1], p ∈ [0, 1]. (63)

Moreover, in view of (59), we have 1
v̄0(y)

∈ (0, 1] for y ∈ X≥y1 . Hence, applying (63), for

every x, y ∈ X≥y1 with x ≥ y and p ∈ [0, 1], we obtain

Wp(v̄0(x), v̄0(y)) = v̄0(y)
1

v̄0(y)
Wp(v̄0(x), v̄0(y)) = v̄0(y)Wp

(
v̄0(x)

v̄0(y)
, 1

)
.

Thus, taking (62) into account, for every x, y ∈ X≥y1 , with x ≥ y, and p ∈ [0, 1], we get

F (x, y; p) = v̄−1
0 (Wp(v̄0(x), v̄0(y))) = v̄−1

0

(
v̄0(y)Wp

(
v̄0(x)

v̄0(y)
, 1

))
.

Hence

F (x, y; p) = v̄−1
0

(
v̄0(y)Φp

(
v̄0(x)

v̄0(y)

))
for x, y ∈ X≥y1 , x ≥ y, p ∈ [0, 1], (64)

where, for every p ∈ [0, 1], a function Φp : I → R is given by

Φp(s) = Wp(s, 1) for s ∈ I, (65)

with I := v̄0(X≥y1). Note that, as v̄0 is a utility function and v̄0(y1) = 1, I is a real interval
containing its left endpoint 1. Furthermore, plugging (64) into (Dist) with z = y1, in view
of (56) and (59), for every x, y ∈ X, with x ≥ y ≥ y1 and p, q ∈ [0, 1], we get

Φq

(
v̄0(y)Φp

(
v̄0(x)

v̄0(y)

))
= Φq (v̄0(y)) Φp

(
Φq (v̄0(x))

Φq (v̄0(y))

)
.
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Hence, we have

Φq

(
tΦp

(
s
t

))
Φq(t)

= Φp

(
Φq(s)

Φq(t)

)
for s, t ∈ I, s ≥ t, p, q ∈ [0, 1]. (66)

Since v̄0(y1) = 1, applying (65), (62), (56) and (57) successively, we obtain

Φp(s) = Wp(s, 1) = v̄0(F (v̄−1
0 (x), v̄−1

0 (1); p)) = v̄0(F (v̄−1
0 (s), y1; p))

= v̄0(F1(v̄
−1
0 (s); p)) = v̄0(v

−1
1 (w1(p)v1(v̄

−1
0 (s)))) for s ∈ I, p ∈ [0, 1].

Therefore, setting Φ := v1 ◦ v̄−1
0 , we get

Φp(s) = Φ−1(w1(p)Φ(s)) for s ∈ I, p ∈ [0, 1]. (67)

Note that, as I is an interval containing its left endpoint 1, the interior of I is of the form
(1, d) with some 1 < d ≤ ∞. We show that for any q ∈ [0, 1] and t ∈ (1, d) a function
f(q,t) :

(
1, d

t

)
→ R defined in the following way

f(q,t)(x) =
1

Φ(x)
Φ

(
Φq(tx)

Φq(t)

)
for x ∈

(
1,

d

t

)
, (68)

is constant. Fix q ∈ [0, 1], t ∈ (1, d) and x1, x2 ∈
(
1, d

t

)
with x1 < x2. Let s ∈ (tx2, d). Then

xi <
s
t

for i ∈ {1, 2} and so, as Φ is strictly increasing, with Φ(1) = (v1◦v̄−1
0 )(1) = v1(y1) = 0,

we have Φ(xi)

Φ( s
t )

∈ (0, 1) for i ∈ {1, 2}. Thus, since w1, being a continuous probability weighting

function, is onto [0, 1], for i ∈ {1, 2} there exists pi ∈ (0, 1) such that w1(pi) = Φ(xi)

Φ( s
t )

. Hence,

in view of (67), for i ∈ {1, 2}, we get

Φps

(s
t

)
= Φ−1

(
w1(p1)Φ

(s
t

))
= xi

and

(Φ ◦ Φpi)

(
Φq(s)

Φq(t)

)
= w1(pi)Φ

(
Φq(s)

Φq(t)

)
=

Φ
(

Φq(s)

Φq(t)

)
Φ
(
s
t

) Φ(xi).

Applying Φ on both sides of (66) with p = pi, and making use of the above two equalities
we obtain

1

Φ(xi)
Φ

(
Φq(txi)

Φq(t)

)
=

Φ
(

Φq(s)

Φq(t)

)
Φ
(
s
t

) for i ∈ {1, 2}.

Thus, taking (68) into account, we conclude that f(q,t)(x1) = f(q,t)(x2), and hence f(q,t) is
constant, say f(q,t)(x) = c(q, t) for x ∈

(
1, d

t

)
, with some c(q, t) ∈ R. So, in view of (68), for

any q ∈ [0, 1], t ∈ (1, d) and x ∈
(
1, d

t

)
, we have

c(q, t) =
1

Φ(x)
Φ

(
Φq(tx)

Φq(t)

)
>

Φ(1)

Φ(x)
= 0

and

Φ

(
Φq(tx)

Φq(t)

)
= c(q, t)Φ(x).
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Therefore, for any q ∈ [0, 1], we obtain

Ψ(Hq(ln t) −Hq(ln t + lnx)) = Gq(ln t) + Ψ(ln x) for t, x ∈ (1, d), tx ∈ (1, d),

where Gq, Hq,Ψ : (0, ln d) → R are given by

Hq(z) = − ln Φq(e
z) for z ∈ (0, ln d), (69)

Gq(z) = ln c(q, ez) for z ∈ (0, ln d), (70)

Ψ(y) = ln Φ(ey) for y ∈ (0, ln d), (71)

with a convention ln∞ = ∞. Thus, for every q ∈ [0, 1], we have

Hq(z) −Hq(z + y) = Ψ−1 (Gq(z) + Ψ(y)) for z, y ∈ (0, ln d), z + y ∈ (0, ln d). (72)

Note that, since Φ and Φq for q ∈ (0, 1) are continuous, it follows from (69) and (71) that so
are Ψ and Hq for q ∈ (0, 1). Thus, in view of (72), Gq is continuous for any q ∈ (0, 1).

Step 2. Equation (72) is a particular case of the functional equation analyzed by Gilányi
et al. (2005). Thus, according to their Theorem 2, for every q ∈ [0, 1], Gq is either constant
or it is strictly monotone. We will first consider the case where Gq is strictly monotone for
some q ∈ [0, 1], and then the case where Gq is constant for every q ∈ [0, 1].

Assume that Gq is strictly monotone for some q ∈ [0, 1]. Then, as Ψ is strictly increasing,
according to (Gilányi et al., 2005, Theorem 2), either there exist α ∈ R \ {0}, β ∈ (0,∞)
and γ ∈ R such that

Ψ(x) = β ln
∣∣1 − e−αx

∣∣ + γ for x ∈ (0, ln d), (73)

or there exist β ∈ (0,∞) and γ ∈ R such that

Ψ(x) = β lnx + γ for x ∈ (0, ln d). (74)

If (73) holds, then as ϕ is continuous with Φ(1) = 0, in view of (71), we get

Φ(x) = eγ
∣∣1 − x−α

∣∣β for x ∈ I.

Therefore, considering separately the case of α negative and then α positive and in each of
them applying first (67) and then (64), for every x, y ∈ X≥y1 with x ≥ y and p ∈ [0, 1], we
get

F (x, y; p) = v̄−1
0

((
w1(p)

1
β v̄0(x)−α + (1 − w1(p)

1
β )v̄0(y)−α

)− 1
α

)
. (75)

Define w := w
1
β

1 and u0 : X≥y1 → R as

u0(x) = |v̄0(x)−α − 1| for x ∈ X≥y1 .

Then w is a continuous probability weighting function and u0 is a utility function with
u0(y1) = 0. Furthermore, in view of (75), we have

F (x, y; p) = u−1
0 (w(p)u0(x) + (1 − w(p))u0(y)) for x ≥ y ≥ y1, p ∈ [0, 1]. (76)

28



If (74) holds, then the functional equation (72) becomes

Hq(z) −Hq(z + y) = e
1
β
Gq(z)y for z, y ∈ (0, ln d), z + y < ln d. (77)

Since Hq is continuous and Hq(0) = 0, it follows from (77) that

Hq(y)

y
= − lim

z→0+
e

1
β
Gq(z) =: a for y ∈ (0, ln d).

Therefore Hq(y) = ay for y ∈ (0, ln d) and so from (77) we derive that e
1
β
Gq(z) = −a for

z ∈ (0, ln d), which contradicts the strict monotonicity of Gq.
We now consider the case where Gq is constant for every q ∈ [0, 1]. Then, as for every

q ∈ [0, 1], Hq is a strictly decreasing continuous function with Hq(0) = 0, applying again
(Gilányi et al., 2005, Theorem 2), we conclude that for every q ∈ [0, 1] there exists a w(q) ∈
(0,∞) such that Hq(x) = −w(q)x for x ∈ (0, ln d). Thus, in view of (69) and the fact that
Φq is continuous for every q ∈ [0, 1], we get

Φq(x) = xw(q) for x ∈ I, q ∈ [0, 1]. (78)

Hence, taking (64) into account, we obtain

F (x, y; p) = v̄−1
0

(
v̄0(x)w(p)v̄0(y)1−w(p)

)
for x ≥ y ≥ y1, p ∈ [0, 1].

This yields (76) with u0 : X≥y1 → R given by u0(x) = ln v̄0(x) for x ∈ X≥y1 . Note that u0

is a utility function, with u0(y1) = 0. Moreover, it follows from (CM) and (76) that w is a
continuous probability weighting function.

This concludes the analysis of all possible cases. In one of them a contradiction was
derived, while in the other two we obtained the required representation (76).

Step 3. Since y1 was an arbitrary element in the interior of X, applying Lemma 6, we
conclude that if inf X /∈ X the representation (1) holds with some utility function u and a
continuous probability weighting function w.

Assume that ℓ := inf X ∈ X. Then, in view of (CM), for every x ∈ X \ {ℓ} and
p ∈ (0, 1), we have F (x, ℓ; p) ∈ X \ {ℓ} and so we get

c := lim
y→ℓ+

u(y) = lim
y→ℓ+

u(F (x, y; p)) − w(p)u(x)

1 − w(p)
=

u(F (x, ℓ; p)) − w(p)u(x)

1 − w(p)
.

Therefore, extending u to X by putting u(ℓ) = c, we conclude that u is a utility function on
X. Furthermore, for every x ∈ X \ {ℓ} and p ∈ (0, 1), we have

F (x, ℓ; p) = u−1(w(p)u(x) + (1 − w(p))c) = u−1(w(p)u(x) + (1 − w(p))u(ℓ)).

Obviously, in view of (Ref), the last equality holds also for x = ℓ or p ∈ {0, 1}. Thus, a
proof of the representation (1) is completed.

Proof of Theorem 5. The uniqueness part is standard. In fact, it follows from Theorem
4. That the axioms are necessary for the existence of the representation is obvious. We now
prove their sufficiency.
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Assume that F : ∆(X) → X satisfies (Ref), (CM) and (Red2). Note that (Red2) is
a system of (Red) indexed by y ∈ X. Therefore, according to Theorem 3, for any y ∈ X,
there exists a utility function uy : X → R such that uy(y) = 0 and

F (x, y; p) = u−1
y (puy(x)) for x ∈ X, p ∈ [0, 1]. (79)

If inf X ∈ X then put z = inf X. Otherwise, let z be an arbitrary element of the interior of
X. Then, setting u := uz, in view of (2) and (79), we get

u−1
y (puy(z)) = F (z, y; p) = F (y, z; 1 − p) = u−1((1 − p)u(y)) for y ∈ X, p ∈ [0, 1]. (80)

Since 1 − u(x)
u(y)

∈ (0, 1] for x, y ∈ X with y > x ≥ z, applying (79) in the first equality and

(80) in the third and fifth equalities, we obtain

F (x, y; p) = u−1
y (puy(x))

= u−1
y

(
puy

(
u−1

((
1 −

(
1 − u(x)

u(y)

))
u(y)

)))
= u−1

y

(
puy

(
u−1
y

((
1 − u(x)

u(y)

)
uy(z)

)))
= u−1

y

(
p
(

1 − u(x)
u(y)

)
uy(z)

)
= u−1

((
1 − p

(
1 − u(x)

u(y)

))
u(y)

)
= u−1(pu(x) + (1 − p)u(y)).

Thus, in view of (Ref), we get

F (x, y; p) = u−1(pu(x) + (1 − p)u(y)) for x, y ∈ X≥z,

which concludes the proof in the case inf X ∈ X. If inf X /∈ X, then the assertion follows
from Lemma 6.

Proof of Corollary 1. Necessity of the axioms is obvious. We now prove their sufficiency.
Assume that (Ref), (CM), and (Dist) hold. Since (Dist) implies (Dist), by Theorem 4 we
obtain the existence of a utility function u and a continuous probability weighting function w
such that (1) holds. In view of (13), in order to get the required representation, it is enough
to show that w satisfies (14), i.e. it is self-conjugate. Fix x, y, z ∈ X with x > z > y and
q ∈ [0, 1]. According to (CM) and (Ref) there exists p ∈ (0, 1) such that F (x, y; p) > z.
Then applying (1), we get

F (F (x, y; p), z; q) = u−1(w(q)w(p)u(x) + w(q)(1 − w(p))u(y) + (1 − w(q))u(z)).

Furthermore, using (CM) and (Ref) again, we obtain

y ≤ F (y, z; q) ≤ z ≤ F (x, z; q) ≤ x.

Thus, applying (1) and (13), yields

F (F (x, z; q), F (y, z; q); p)
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= u−1(w(p)w(q)u(x)+(1−w(1−q))(1−w(p))u(y)+(w(p)(1−w(q))+(1−w(p)w(1−q))u(z)).

Therefore, in view of (Dist) we get

(1 − w(p))(w(q) + w(1 − q) − 1)(u(z) − u(y)) = 0.

Since the first and the third part of the above product are strictly positive, the middle
part must be zero. Since q is arbitrary, this proves that w is self-conjugate, which ends the
proof.

Proof of Theorem 6. That (i) implies (iv) is straightforward to verify. That (iv) implies
(ii) and also (iii) is obvious. We now prove that (ii) implies (i). Assume that (19) holds
for every p ∈ (0, 1) and q = p. Then, taking (2) into account, we get that (19) holds with p
replaced by 1− p and q replaced by q = 1− p. Thus, applying (Aczél, 1947, Theorem of §2),
we obtain the existence of utility functions u, v and weights w(p), w(1− p) ∈ (0, 1) such that

F (x, y; p) = u−1(w(p)u(x) + (1 − w(p))u(y)) for x, y ∈ X, p ∈ (0, 1) (81)

F (x, y; 1 − p) = v−1(w(1 − p)v(x) + (1 − w(1 − p))v(y)) for x, y ∈ X, p ∈ (0, 1).

Hence, in view of (2), for every x, y ∈ X and p ∈ (0, 1), we have

u−1(w(p)u(x) + (1 − w(p))u(y) = v−1((1 − w(1 − p))v(x) + w(1 − p)v(y)).

Therefore, applying Lemma 5, yields w(p) = 1−w(1−p) for p ∈ (0, 1). So, putting w(0) = 0
and w(1) = 1, and using the strict monotonicity of F in probability, we conclude that w is
a self-conjugate probability weighting function. Moreover, making use of (Ref), from (81)
we deduce that (i) holds. It is left to show that (iii) implies (i). Assume that (19) holds for
every p ∈ (0, 1) and some q ∈ (0, 1). Then taking p = q and applying (Aczél, 1947, Theorem
of §2), we obtain that there exist a utility function u : X → R and a β ∈ (0, 1) such that

F (x, y; q) = u−1(βu(x) + (1 − β)u(y)) for x, y ∈ X. (82)

For every p ∈ [0, 1] define a function Wp : u(X)2 → u(X) by

Wp(s, t) = u(F (u−1(s), u−1(t); p)) for s, t ∈ u(X). (83)

Then, in view of (19) and (82), for every p ∈ (0, 1) and (x1, x2, x3, x4) ∈ X4, we get

Wp (β(u(x1), u(x2)) + (1 − β)(u(x3), u(x4)))

= Wp (βu(x1) + (1 − β)u(x3), βu(x2) + (1 − β)u(x4))

= Wp (u(F (x1, x3; q)), u(F (x2, x4; q))) = u(F (F (x1, x3; q), F (x2, x4; q); p))

= u(F (F (x1, x2; p), F (x3, x4; p); q)) = βu(F (x1, x2; p)) + (1 − β)u(F (x3, x4; p))

= βWp(u(x1), u(x2)) + (1 − β)Wp(u(x3), u(x4)).

Hence, for every p ∈ [0, 1], the function Wp satisfies functional equation

Wp (βx̄ + (1 − β)ȳ) = βWp(x̄) + (1 − β)Wp(ȳ) for x̄, ȳ ∈ u(X)2. (84)
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Therefore, applying the Daróczy-Páles identity (Daróczy and Páles, 1987)

β

(
β
x̄ + ȳ

2
+ (1 − β)x̄

)
+ (1 − β)

(
βȳ + (1 − β)

x̄ + ȳ

2

)
=

x̄ + ȳ

2
for x̄, ȳ ∈ u(X)2,

we obtain that, for every p ∈ [0, 1], the function Wp satisfies the two-dimensional Jensen
functional equation

Wp

(
x̄ + ȳ

2

)
=

Wp(x̄) + Wp(ȳ)

2
for x̄, ȳ ∈ u(X)2,

Since X is an interval and u is continuous and strictly increasing, u(X)2 is a non-empty
convex subset of R2. Moreover since F satisfies continuity and monotonicity in each payoff,
it is continuous. Thus, for each p ∈ [0, 1], Wp is continuous. Therefore, applying (Kuczma,
2008, Theorem 13.2.2), we conclude that for every p ∈ [0, 1] there exist w(p), v(p), c(p) ∈ R
such that

Wp(x, y) = w(p)x + v(p)y + c(p) for (x, y) ∈ u(X)2. (85)

Moreover, making use of (Ref), (83) and (85), for every p ∈ [0, 1] and x ∈ u(X), we get

(w(p)+v(p))x+c(p) = Wp(x, x) = u(F (u−1(x), u−1(x); p)) = u(F (u−1(x))) = u(u−1(x)) = x.
(86)

Thus, for every p ∈ [0, 1], we have w(p) + v(p) = 1 and c(p) = 0, that is (85) becomes

Wp(x, y) = w(p)x + (1 − w(p))y for (x, y) ∈ u(X)2. (87)

Hence, replacing x and y by u(x) and u(y), respectively, in view of (83), we obtain (15). It
follows from (Ref), that w(0) = 0 and w(1) = 1. Moreover, as F is monotone with respect
to its payoffs, in view of (15), we have w(p) ∈ [0, 1] for p ∈ [0, 1]. Thus, since F is strictly
increasing in p, w is a probability weighting function. Finally, from (2) and (15) we derive
that w is self-conjugate.

Proof of Theorem 7. That (i) implies (ii) is straightfoward to verify. We now prove that
(ii) implies (i). Let

M(x, y) := F (x, y; 0.5) for x, y ∈ X. (88)

Then, in view of (Ref), we get

M(x, x) = F (x, x; 0.5) = F (x) = x for x ∈ X,

M(y, x) = F (y, x; 0.5) = F (x, y; 0.5) = M(x, y) for x, y ∈ X.

Thus, M is reflexive and symmetric. Moreover, since F is monotonic in each of its payoffs,
M is strictly increasing in each of its variables. So, since F satisfies (19) for p = q = 0.5, M
satisfies

M(M(x1, x2),M(x3, x4)) = M(M(x1, x3),M(x2, x4))

for any (x1, x2, x3, x4) ∈ X4. Therefore, applying (Burai et al., 2021, Theorem 8) there exists
a utility function u such that

M(x, y) = u−1

(
u(x) + u(y)

2

)
for x, y ∈ X.
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Hence, by (88), we get

F (x, y; 0.5) = u−1

(
u(x) + u(y)

2

)
for x, y ∈ X. (89)

For every p ∈ [0, 1] define a function Wp : u(X)2 → u(X) by

Wp(s, t) = u(F (u−1(s), u−1(t); p)) for s, t ∈ u(X). (90)

Then, in view of (89) and (ii), for every p ∈ (0, 1) and (x1, x2, x3, x4) ∈ X4 such that x1 ≥ x2

and x3 ≥ x4, we obtain

Wp

(
1
2
(u(x1), u(x2)) + 1

2
(u(x3), u(x4))

)
= Wp

(
1
2
u(x1) + 1

2
u(x3),

1
2
u(x2) + 1

2
u(x4)

)
= Wp (u(F (x1, x3; 0.5)), u(F (x2, x4; 0.5))) = u(F (F (x1, x3; 0.5), F (x2, x4; 0.5); p))

= u(F (F (x1, x2; p), F (x3, x4; p); 0.5)) = 1
2
u(F (x1, x2; p)) + 1

2
u(F (x3, x4; p))

= 1
2
Wp(u(x1), u(x2)) + 1

2
Wp(u(x3), u(x4)).

Hence, for every p ∈ [0, 1], the function Wp satisfies the two-dimensional Jensen functional
equation

Wp

(
x̄ + ȳ

2

)
=

Wp(x̄) + Wp(ȳ)

2
for x̄, ȳ ∈ D,

where D := {(u(x), u(y)) : x, y ∈ X, x ≥ y}. Since X is an interval and u is continuous
and strictly increasing, D is a convex subset of R2. Moreover, since F is monotonic in each
payoff and in view of (90), for every p ∈ [0, 1], we have

y ≤ Wp(x, y) ≤ x for (x, y) ∈ D.

Thus, for every p ∈ [0, 1] and (x, y) ∈ D with x > y, Wp is bounded on [y, x]2 and so, ac-
cording to (Kuczma, 2008, Lemma 9.3.1, and Theorem 13.2.3), Wp is continuous. Therefore,
applying (Kuczma, 2008, Theorem 13.2.2), we conclude that for every p ∈ [0, 1] there exist
w(p), v(p), c(p) ∈ R such that

Wp(x, y) = w(p)x + v(p)y + c(p) for (x, y) ∈ D. (91)

Moreover, making use of (Ref) and (90) and (91), for every p ∈ [0, 1] and x ∈ u(X), we
obtain (86). Thus, for any p ∈ [0, 1], we have w(p) + v(p) = 1 and c(p) = 0, and so (91)
becomes

Wp(x, y) = w(p)x + (1 − w(p))y for (x, y) ∈ D.

Hence, replacing x and y by u(x) and u(y), respectively, in view of (90), we get

F (x, y; p) = u−1(w(p)u(x) + (1 − w(p))u(y)) for x, y ∈ X, x ≥ y, p ∈ [0, 1]. (92)

It follows from (Ref), monotonicity of F and (92) that w(p) ∈ [0, 1] for p ∈ [0, 1] and w
is non-decreasing with w(0) = 0 and w(1) = 1. Furthermore, in view of (89) and (92), it
follows that w(0.5) = 0.5. Finally, the representation for x < y is derived from (2) and
(92).
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Proof of Lemma 1. We list the orders in each class

Σ1 = {(1234), (2143), (2413), (4231), (4321), (3412), (3142), (1324)},
Σ2 = {(1243), (1342), (2431), (3421), (4312), (4213), (3124), (2134)},
Σ3 = {(3214), (2314), (1423), (1432), (2341), (3241), (4132), (4123)}.

Note that Σ1 is a subgroup of Σ generated by two elements: τ = (1324) and ρ = (2143).
So, for i = 1 (22) holds. Let σ2 = (1243) and σ3 = (3214). Note that σ2 ∈ Σ2 and σ3 ∈ Σ3.
Furthermore, for every σ ∈ Σ1, we have

((σ ◦ σ2)(1) − (σ ◦ σ2)(2)) ((σ ◦ σ2)(3) − (σ ◦ σ2)(4)) = (σ(1) − σ(2)) (σ(4) − σ(3)) < 0,

((σ ◦ σ2)(1) − (σ ◦ σ2)(4)) ((σ ◦ σ2)(2) − (σ ◦ σ2)(3)) = (σ(1) − σ(3)) (σ(2) − σ(4)) > 0.

Hence σ ◦ σ2 ∈ Σ2 for σ ∈ Σ1 and so, as the mapping Σ1 ∋ σ 7→ σ ◦ σ2 ∈ Σ2 is injective and
Σ1 and Σ2 are finite sets of the same cardinality, we get Σ1 ◦ σ2 = Σ2. In a similar way, we
obtain Σ1 ◦ σ3 = Σ3. Therefore, for i ∈ {2, 3} and σ ∈ Σi, we have

τ ◦ σ ∈ τ ◦ Σi = τ ◦ Σ1 ◦ σi = Σ1 ◦ σi = Σi,

ρ ◦ σ ∈ ρ ◦ Σi = ρ ◦ Σ1 ◦ σi = Σi ◦ σi = Σi.

Hence, as τ and ρ generate Σ1, we obtain Σ1 ◦ σ ⊂ Σi for σ ∈ Σi and i ∈ {2, 3}. Since
Σi for i ∈ {1, 2, 3} are finite sets of the same cardinality and for any σ ∈ Σ, a mapping
Σ ∋ π 7→ π ◦ σ ∈ Σ is injective, this yields (22).

Proof of Lemma 2. Assume that Σi(F ) ̸= ∅ and fix a σ ∈ Σi(F ). Replacing p with q and
swapping the sides of (21) yields:

F (F (x1, x3; p), F (x2, x4; p); q) = F (F (x1, x2; q), F (x3, x4; q); p) (93)

for all p, q ∈ (0, 1) and (x1, x2, x3, x4) ∈ Aσ. Take τ = (1324) and relabel the variables in
(93) by replacing xj with xτ(j) for j ∈ {1, 2, 3, 4} to obtain that F satisfies the bisymmetry
equation on Aτ◦σ, i.e. τ ◦ σ ∈ Σi(F ). Similarly, replacing p with 1 − p and applying (2) in
(21), we obtain

F (F (x2, x1; p), F (x4, x3; p); q) = F (F (x2, x4; q), F (x1, x3; q); p) (94)

for all p, q ∈ (0, 1) and (x1, x2, x3, x4) ∈ Aσ. So, taking ρ = (2143) and relabeling the
variables in (94) by replacing xj with xρ(j), for j ∈ {1, 2, 3, 4}, we get that F satisfies the
bisymmetry equation on Aρ◦σ, i.e. ρ ◦ σ ∈ Σi(F ). Hence, as τ and ρ generate Σ1, we get
that Σ1 ◦ σ ⊂ Σi(F ). Therefore, applying Lemma 1, we conclude that Σi ⊂ Σi(F ). Since by
definition Σi(F ) ⊂ Σi, so Σi(F ) = Σi .

Proof of Theorem 8. By Corollary 1, (ii) implies (i) Since w is self-conjugate, F of the
form (15) satisfies the bisymmetry equation on X4. Thus (i) implies (v). That (v) implies
(iv) is obvious and, according to Lemma 2, (iv) implies (iii). We now prove that (iii) implies
(ii). First observe that in order to prove (Dist) it is sufficient to show that

F (F (x, y; p), z; q) = F (F (x, z; q), F (y, z; q); p) (95)
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holds p, q ∈ (0, 1) and x, y, z ∈ X with x ≥ y. Indeed, in such a case replacing p by 1 − p in
(95) and using (2), we obtain that (95) is valid for p, q ∈ (0, 1) and x, y, z ∈ X with y ≥ x
as well.

Let p, q ∈ (0, 1) and x, y, z ∈ X be such that x ≥ y. Assume that F satisfies the
bisymmetry equation on Aσ for some σ ∈ Σ2. Hence, according to Lemma 2, Σ2(F ) = Σ2.
As (1243) ∈ Σ2, F satisfies the bisymmetry equation on A(1243), i.e. on {(x1, x2, x3, x4) ∈
X4 : x1 ≥ x2 ≥ x4 ≥ x3}. Thus, putting in (21) x1 = x, x2 = y, x3 = x4 = z, whenever
y ≥ z; and x1 = x, x2 = x4 = z, x3 = y, whenever x ≥ z ≥ y, we obtain (95). Moreover, as
(3421) ∈ Σ2, F satisfies the bisymmetry equation on A(3421), i.e. on {(x1, x2, x3, x4) ∈ X4 :
x3 ≥ x4 ≥ x2 ≥ x1}. Hence, if z ≥ x, then setting in (21) x1 = y, x2 = x, x3 = x4 = z, we
get (95) again.

Proof of Theorem 9. First, we show that

A = ∪σ∈Σ1Aσ. (96)

Note that, if σ ∈ Σ and (x1, x2, x3, x4) ∈ Aσ, then for every i, j ∈ {1, 2, 3, 4}, we have

xi > xj if and only if σ−1(i) < σ−1(j). (97)

Let (x1, x2, x3, x4) ∈ ∪σ∈Σ1Aσ. Then (x1, x2, x3, x4) ∈ Aσ for some σ ∈ Σ1. Since Σ1 is a
subgroup of Σ, we have σ−1 ∈ Σ1 and so, by the definition of Σ1, we get

(σ−1(1) − σ−1(2))(σ−1(3) − σ−1(4)) > 0 and (σ−1(1) − σ−1(3))(σ−1(2) − σ−1(4)) > 0. (98)

Thus, applying (97), we obtain (x1, x2, x3, x4) ∈ A, which proves that ∪σ∈Σ1Aσ ⊂ A. Con-
versely, assume that (x1, x2, x3, x4) ∈ A. Then (x1, x2, x3, x4) ∈ Aσ for some σ ∈ Σ. Hence,
in view of (97), we get (98), which implies that σ−1 ∈ Σ1. Using once more the fact that Σ1

is a subgroup of Σ, we obtain σ ∈ Σ1. Thus, we have (x1, x2, x3, x4) ∈ ∪σ∈Σ1Aσ. In this way,
we have shown that A ⊂ ∪σ∈Σ1Aσ. Therefore, (96) holds.

It follows from (96) that (iv) implies (v) and (v) implies (iii). That (iii) implies (iv) is
a consequence of Lemma 2. We now prove that (iii) implies (ii). Assume that (iii) holds.
Then, by the equivalence of (iii) and (iv), F satisfies the bisymmetry equation on A(1234),
that is on {(x1, x2, x3, x4) ∈ X4 : x1 ≥ x2 ≥ x3 ≥ x4}. Thus, taking p, q ∈ (0, 1) and
x, y, z ∈ X with x ≥ y ≥ z and setting in (21) x1 = x, x2 = y, x3 = x4 = z, we obtain
(Dist). By Theorem 4, (ii) implies (i). Finally, it is straighforward to check that F of the
form (1) satisfies the bisymmetry equation on A(1234), which shows that (i) implies (iii).
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Gilányi, A., C. T. Ng, and J. Aczél (2005). On a functional equation arising from comparison
of utility representations. Journal of mathematical analysis and applications 304 (2), 572–
583.

Gilboa, I. (2009). Theory of decision under uncertainty, Volume 45. Cambridge university
press.

Gonzalez, R. and G. Wu (1999). On the shape of the probability weighting function. Cognitive
psychology 38 (1), 129–166.

Grether, D. M. and C. R. Plott (1979). Economic theory of choice and the preference reversal
phenomenon. The American Economic Review 69 (4), 623–638.

Gul, F. (1991). A theory of disappointment aversion. Econometrica: Journal of the Econo-
metric Society 59 (3), 667–686.

Hardy, G. H., J. E. Littlewood, and G. Polya (1934). Inequalities. Cambridge.
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