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Abstract

We define carpooling as a coalition game and present a socially optimal solution that
minimizes the overall cost of commuting and is stable and fair. Instead of transferring
costs between players, individual rationality is achieved by appropriate composition
and assignment of drivers within carpools. We develop a three-step solution procedure,
where our final solution is based on the stable pre-nucleolus of the underlying game. The
results of computational experiments show that our procedure guarantees substantial
gains from carpooling. These gains increase with the number of commuters and are
comparable to gains achieved by centralized systems, which ignore stability and fairness.

1



1 Introduction

Carpooling allows travelers to share a ride to a common destination, such as a workplace

or a school. It provides numerous social and individual benefits. It reduces vehicle miles

traveled, fuel consumption, greenhouse gas (GHG) emissions, air pollution (Bruck et al.,

2017; Liu et al., 2019), and road congestion (Li et al., 2007; Santi et al., 2014). It saves

time, money, and stress (Shaheen et al., 2016) through shared driving responsibilities and

travel-time savings associated with High-Occupancy Vehicle (HOV) lane access (Shaheen

et al., 2018). It is usually more convenient and flexible than public transport, and it reduces

the need for parking space while providing financial and tax benefits for employers (Shaheen

et al., 2018).

According to Furuhata et al. (2013) the main challenges to making shared driving more

popular are (a) designing attractive mechanisms that encourage participation, (b) coordi-

nation of itineraries and schedules, and (c) building trust among unknown passengers. As

carpooling involves regular and pre-arranged trips between household members, neighbors,

or co-workers, traveler’s demand (i.e., travelers’ origins/destinations and arrival times) is

known beforehand (Mourad et al., 2019; Furuhata et al., 2013). Hence, (b) and (c) are less

of a problem than (a). This gives carpooling a comparative advantage over other flexible and

ad hoc types of ride-sharing and makes it the most popular among them (Morency, 2007).

Despite its advantages, the share of drivers using carpooling is relatively low (Olsson et al.,

2019) and has declined over the recent years1.

The main problem seems to be designing attractive carpooling schemes which encourage

participation. Due to its voluntary character, it is not sufficient to make carpooling better

for the whole society or for a group of commuters. It must be sufficiently better than

outside options on an individual level, i.e., for each participant independently. Carpooling

should be able to compete with the immediate access to door-to-door transportation that
1Of those commuting by automobile, 19.7% carpooled in 1980 as compared to only 9.0% in 2016 (Shaheen

et al., 2018).
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private cars provide (Agatz et al., 2012). So, a proper design of a carpooling arrangement

should maximize the social benefits of carpooling while making it sufficiently better (for each

individual) than the outside option of driving alone. In a traditional carpool for recurring

trips to work or school, participants typically do not share costs on a per-trip basis but take

turns driving their own cars. If the composition of the group of participants differs per trip,

which might be the case in the socially optimal carpooling arrangement, it is not trivial to

establish a fair driver schedule that respects individual goals (Agatz et al., 2012; Fagin and

Williams, 1983; Naor, 2005).

In this paper, we take up this challenge and analyze carpooling from a game-theoretical

perspective. We observe that, typically, there is a trade-off between collective and individ-

ual rationality. Assigning people to a carpool in a way that provides large overall benefits

usually requires driving loads to be allocated highly asymmetrically between the carpool

members. One could assume that there exists some efficient means by which drivers may be

compensated by riders within a carpool for their extended driving (transferable utility case),

but we find this assumption unrealistic. The benefits of a carpool are widely scattered not

only among participants but also among those outside of the carpool. On the other hand,

the costs of driving one’s own car are concentrated on the driver and extend beyond fuel or

car depreciation. Time is valuable, and driving requires full attention from the driver2. A

commuter who is not a professional driver and has other duties and obligations may be un-

willing to spend more time driving than when commuting alone. We thus assume, consistent

with common practice, that individual rationality (IR) cannot be achieved by compensating

participants for their extended driving with money or some other means. Instead, savings

are generated by the appropriate composition of carpools and the driver’s designation for

each carpool so that no individual drives (on average) more than when commuting alone.

Not only does this approach allow us to extend existing carpooling models, but it also results
2This is important while carpooling to a workplace, but also when driving children to school. In the

latter case, only the driver “loses” time, and the other parents save time while their child is being driven in
a carpool.
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in previously-unknown carpooling arrangements, which increase participation and generate

additional savings. We support our findings with experiments on both simulated and real-

world instances for which we calculate the savings for each individual and the whole group

of commuters in the most common carpooling types.

2 Related literature

Several research papers have been devoted to searching for optimal carpooling arrangements

to maximize the benefits of carpooling. Integer linear programs have been proposed to solve

the ride-sharing problem in general (Chen et al., 2019) and carpooling as its special case

(Baldacci et al., 2004). They propose exact algorithms for problems of limited size and

heuristic methods for larger problems.

The majority of papers in the field focus on operational objectives of carpooling, such as

optimizing system-wide operating costs. Individual preferences are considered indirectly as

constraints in an optimization problem seeking to maximize the social benefits of carpooling.

For example, Hasan et al. (2020) analyzes the commute trip-sharing problem to find a routing

plan that maximizes ride-sharing while controlling for the ride duration.

However, carpooling is voluntary, and decisions on whether to form a pool are made

on an individual level. For this reason, centralized approaches seem insufficient to address

individual quality-related objectives. Kalczynski and Miklas-Kalczynska (2019); Miklas-

Kalczynska and Kalczynski (2020) consider a decentralized approach and show that it can

generate similar system-wide savings as centralized settings while taking carpool members’

preferences into account (Mourad et al., 2019, p.329). They consider both the classic to-from

carpool type (e.g. commuting to a workplace) as well as less analyzed pickup-dropoff carpool

(e.g., driving children to school). The limitation of their approach is that they use a heuristic

to capture individual preferences (driving is shared equally among carpool members, savings

from carpooling exceed a certain threshold, limited detour distance, etc.). Although the
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heuristic approach results in substantial savings, their setting does not allow addressing the

issue of stability (no incentive to deviate) nor fairness of carpooling arrangements.

Stability requires a game-theoretical framework. It has been studied in many game classes

that are related to carpooling. Dreze and Greenberg (1980); Bogomolnaia and Jackson

(2002); Aziz et al. (2013); Hasan et al. (2014) analyze the stability of hedonic coalition

structures where each player’s preferences over partitions of players depend only on the

members of their coalitions. Dunne et al. (2010) analyze stability in the context of Coalitional

Resource Games (a special case of nontransferable utility games) using a bargaining-based

approach to coalition structure generation, and show that a carpool scheme falls within

this domain, yet they do not provide the details for this case. Norde et al. (2004) show

that carpooling with hubs can be modeled as a minimum cost spanning tree. They assume

transferable utility and use the so-called population monotonic allocation scheme, a solution

concept in which individual cost does not increase as more people are added to the coalition.

Ostrovsky and Schwarz (2019) analyze carpooling as a system that could be implemented

using self-driving cars. They take both social and individual objectives into account and

show how to ensure stability by setting a toll system. They assume fully transferable utility

that is quasilinear in money. Benjaafar et al. (2022) analyze ride-sharing via a platform using

a game-theoretic setup. They establish equilibrium conditions by setting up a price system

that matches the supply and demand of car rides. Their model uses transferable utility and

a continuum of players, and instead of having a specific network structure (players’ locations

and traffic connections) determine players’ strategic position, they assume homogeneous

payoffs for all players choosing a given commuting strategy.

The carpooling game considered in this paper does not belong to any of the standard

game classes. It is neither the characteristic function game, in which the value of a coalition

depends solely on the identities of its members, nor the partition function game, in which

the value also depends on how all players, including the nonmember-ones, are partitioned

(Rahwan et al., 2015). It is also not a hedonic game because players’ preferences depend not
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only on the carpool to which they belong but also on their share of driving. Unlike in the

standard cooperative games, the grand coalition will not form even if the cost is subadditive

because the size of a coalition is restricted to m ≤ n. This feature adds complexity to the

problem: one has to search for partitions of the set N into components not to exceed m

players (Bényi and Ramírez, 2019).

Any carpooling game is a game in which the solution must be implementable in coalition

structures. If utility were fully transferable, it would suffice to restrict coalition shares to be

binary, which would lead to a single coalition structure in the optimal solution (a partition

of players). This is without loss of generality because a single coalition structure is always

in the set of optimal solutions, i.e., it is always optimal for a carpool to choose a driver in

such a manner that the distance is minimized. In our game, since we insist on having the

individual rationality constraints satisfied with no utility (cost) transfers between players, it

is not possible, and we must look for solutions that take the form of a probability distribution

over several coalition structures. This approach requires our (more complex) setup.

Our carpooling game falls neither in the pure transferable nor the nontransferable utility

class. Individual rationality (no participant drives more on average than when commuting

alone) is ensured with no utility (cost) transfers between players. Incentive compatibility

requires cost-equivalent transfers between carpool members. When the core is empty (this

is possible only in the to-from carpooling type), we determine the amount of cost equivalent

that must be added externally to the system to restore stability.

Stability is important to boost carpool participation, yet fairness is also important. Fagin

and Williams (1983) and Naor (2005) suggest that a fair-share in a carpool problem is

the Shapley value of the carpooling game with transferable utility. The problem with this

approach is that, except for convex games, the Shapley value allocation is not guaranteed to

be stable, even if the core of a game is nonempty. This is true for carpooling problems, in

which the core might be empty. In order to ensure that the solution is stable whenever stable

solutions exist, we propose the pre-nucleolus solution (Potters, 1991; Snijders, 1995; Lu and
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Quadrifoglio, 2019) rather than the Shapley value solution. The pre-nucleolus also promotes

fairness by minimizing the largest “unhappiness” of the coalitions’ participants, and it has

the advantage of being in the core whenever the core exists. And, if the core doesn’t exist,

it reveals the amount of cost equivalent that has to be exogenously added to the system to

restore stability. This feature constitutes a well-defined and operational policy implication.

3 Statement of the problem

We consider a geographically-dispersed group of commuters who travel to the same desti-

nation repetitively using their private vehicles. These could be employees commuting to

work on workdays or schoolchildren dropped off at and picked up from school on school

days. These commuters can either travel alone or in one of the carpools formed with other

commuters; however, they can only be part of a single carpool per trip. Each vehicle owner

can act either as a driver or rider (in another vehicle) in a carpool, and the maximum num-

ber of available seats restricts the carpool size. Commuters can make different carpooling

arrangements for each trip (switch carpools) in such a manner that, each of them will never

drive more on average than they would when commuting alone. Such individually rational

arrangements could involve a combination of trips for a single commuter: driving alone,

driving others in a carpool, and riding as a passenger. The group as a whole will create

value from carpooling by reducing the total distance traveled and time spent driving and

will thus reduce congestion, pollution, and land use for parking spaces. The policymaker

(e.g., school, workplace, local transportation authority) maximizes the value created by such

arrangements by defining carpools and specifying the percentage of time each commuter will

participate (as a driver or rider) in each of these carpools. The policymaker also determines

the fraction of time (if any) each commuter will be driving alone.

While the proposed allocation achieves individual rationality (in a sense defined above)

with no transfers between commuters, it does not, in general, ensure stability. While no

7



commuter wants to unilaterally deviate from the proposed scheme, it might be that a group

of commuters would form an alternative carpool in which all of its members will be better off.

In order for the mechanism to be not only individually-rational but also incentive-compatible

and thus stable, we allow limited cost transfers between players. In the second stage of the

optimization process, we determine the amounts of transfers between players, which will make

the final allocation stable (i.e. in the core). In the baseline case, transfers are equivalent

to miles driven. Although this restricts the model (implicitly assuming identical and linear

utility functions for each commuter), we show how this assumption can be relaxed. In some

cases, the net transfer necessary to restore stability is null, while in others, it is strictly

negative. The latter means that the policymaker needs to add an extra amount to the

system to make it stable. In such a case, we determine the minimum amount to be added.

Since there might be uncountably many stable allocations in general, and we care about

the fairness of allocation as a secondary optimization criterion, our solution will form a stable

pre-nucleolus of the associated game, i.e., we will minimize, in the lexicographic order, the

greatest utility excess among players, then the second greatest, the third greatest, and so on.

It is known that the pre-nucleolus solution always exists, it is unique, belongs to the core

whenever it exists, and guarantees fairness in the sense of minimizing the greatest excess.

Our approach to designing stable and fair cost allocation scheme for carpooling is similar to

that of Lu and Quadrifoglio (2019). Like theirs, our proposed solution is also based on the

pre-nucleolus solution. However, unlike them, we do not assume cost transferability among

the players and transfers are allowed only in restricted sense.

In this paper, we will provide answers to the following questions:

1. What is the optimal assignment of players and (among them) drivers to carpools so

that each player does not drive more on average than when commuting alone, each

player is served (i.e., completes the trip at each commuting event), and the overall

driving distance is minimized?

2. What are the amount of transfers between players (riders and drivers) so that full
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stability and fairness are achieved?

We assume an infinite horizon. Hence a driving arrangement for a player can take the

form of a sequence of real-valued non-negative shares adding up to one for the player driving

in several different carpools. Yet, the nature of the problem makes it impossible for a player

to be a member of two carpools (either as a driver or as a rider) simultaneously. Hence,

the solution to the assignment problem must be implementable in coalition structures, i.e.,

form a probability distribution over partitions of the set of all players. If several coalition

structures form, then the total of their shares must equal one (one coalition structure at

a time). We investigate what are the potential benefits of switching carpools and carpool

structures.

Our approach applies to carpooling and vanpooling: they are both prearranged and

typically associated with a daily commute. We distinguish two classes:

a) To/From Carpool (TFC): The vehicle operator picks up riders on the way to a common

destination (e.g., a workplace); this is the most common class studied in carpooling

literature;

b) Pick Up/Drop Off Carpool (PDC) (Miklas-Kalczynska and Kalczynski, 2020; Kalczyn-

ski and Miklas-Kalczynska, 2019): The vehicle operator picks up riders on the way to

a common destination (e.g., a school), drops them off, and then returns to the point

of origin.

The remainder of the paper is organized as follows. The formal carpooling model and

the exact solution to the cost optimization problem are presented in Section 4. Section

5 describes the three-step procedure for finding a fair solution. An algorithm for solving

large-scale, practical problems is described in Section 6. Section 7 offers an illustrative

example. Section 8 presents the results of computational experiments on simulated and real-

world Daily Carpooling Problem instances. Section 2 offers a discussion of the results in the
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context of relevant literature. We conclude the paper in Section 9 and present some future

research ideas.

4 The model

Let N = {1, 2, ..., n} be a finite set of players (also referred to as participants or players)

where n ≥ 2. Each player commutes to a destination (e.g., a workplace or school), denoted

by 0, repeatedly and may do so by either driving alone or by joining a coalition of players

(carpool), in which a designated member drives all other members to the destination. The

maximum size of a carpool is m ≤ n (we thus call the game “multi-restricted,” see Choi,

2015). Let Cm denote the set of possible carpools, i.e., all non-empty subsets of N of size at

most m. There are
∑m

j=1

(
n
j

)
such coalitions. An m-restricted coalition structure, denoted

by P , is a partition (i.e., an exclusive and exhaustive subset) of N containing only sets of at

most m players. The set of all such coalition structures is denoted by Pm. The size of Pm

can be determined using a formula in Appendix B. For C ∈ Cm and i ∈ C, let c(C, i) denote

the cost (distance, time) player i incurs by driving all members of C to a destination. Only

the driver incurs the cost of a carpool. To simplify, we denote c({i}, i) by c(i).

We assume that costs c(C, i) are induced by some metric over the space of player locations,

i.e., we assume that there exists a space of player possible locations (e.g. R2) such that c(C, i)

is the distance of the driving route in a given carpooling type:

• TFC: the shortest route from i to the destination via all locations in C \ {i}

• PDC: the same as in TFC plus the return distance from 0 to i.

Whether c(C, i) denotes a TFC or a PDC cost will always be given by the context. By

this assumption, costs satisfy properties of a metric, in particular the triangle inequality and

symmetry. This has implications for both carpooling types (TFC and PDC). For example,

there is no loss of generality in considering only half of the path of any carpool in the TFC
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game, as its distance is always half of the overall distance (see Proposition 2 in Appendix

A). In the PDC game, driving together is never worse than driving alone.

We say that two locations i, j exhibit benefits from pooling if the following condition

holds: min [c({i, j}, i), c({i, j}, j)] ≤ c(i) + c(j). Note that in the PDC game this condition

holds for any pair of locations. It follows that in this case the optimal partitions in the

centralized solution, in which only the overall distance is minimized, belong to the set of

coarsest m-restricted partitions (see Proposition 3 in Appendix A). However, in TFC, it

might be that pooling i and j together is worse than having them commute separately; to

see it consider i and j located on the opposite sides of the destination. In this case driving

together implies driving the distance of each player commuting separately plus the distance

of getting to one of the payers from the destination.

The profitability of carpooling also depends on the chosen metric. For example, in the

TFC game the locations (1,−0.1) and (1, 1), both in R2 exhibit positive benefits from car-

pooling under the Euclidean but not under the Manhattan metric.

We are interested in determining a cost allocation scheme, which consists of:

• The driving shares δ(C, i) ∈ [0, 1],3 for each carpool C and i ∈ C

• Cost transfers t(i) to achieve stability/fairness for each player i.

5 The proposed solution

We want to exploit the benefits from centralized carpooling while ensuring stability. Gener-

ally, in games like the carpooling game, full stability is very hard or impossible to achieve

in the absence of (cost-equivalent) transfers between players. Even worse, there are cases in

which extra value has to be added to the system to achieve stability. We now describe our

proposed solution which requires only restricted transfers.
3Technically, to implement any share in [0, 1], we assume a limit point in a infinitely repeated sequence of

commuting events. In practice, only a subset of [0, 1] will be implementable. For example to implement an
annual plan involving J school or workdays (typically, 180, or 252, respectively), the implementable shares
are contained in the set { i

J : i ∈ {0, 1, ..., J}}.
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We say that a cost allocation scheme (δ(C, i), t(i))C,i is stable if:

• IR: no player drives more on average than when commuting alone.

• IC: No feasible carpool (including single commuters) may incur lower cost equivalent

(driving plus transfers) than under the proposed allocation scheme.

We will find stable cost allocation scheme using a three-step procedure. In the first

step we determine the driving shares δ(C, i) for each carpool and each of its members to

minimize overall cost subject to IR constraints. This step does not require any cost-transfers

between players. Simply speaking, the first step determines the size of a cake under the IR

constraints. This cake will be split more evenly between players in the next two steps. In

the second step, for each feasible carpool (|C| ≤ m) we determine its lowest overall cost in

the presence of the IR constraint. In the third step, we will find a stable pre-nucleolus of

the game, i.e., we will find cost transfers between players to minimize the maximum (over

all feasible carpools) excess between the lowest cost of a carpool found in the second step

and the sum of the overall driving cost and transfers for members of this carpool. We will

also determine the net transfer (if any) of cost that is necessary for the IC constraints to

hold. The proposed solution will thus be stable in the sense defined above. Our proposed

solution will also be fair in the sense described above, i.e., we will minimize the maximum

excess (Spinetto, 1975). The three steps outlined above are summarized below:

1. Determine a socially optimal solution satisfying Individual Rationality:

• Assign players to carpools

• Determine shares of driving in each carpool

• Determine the overall value

2. Construct incentive compatibility constraints

3. Find the unique stable pre-nucleolus solution
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• Determine individual and net transfers to achieve stability/fairness.

We now describe each step in detail.

5.1 Step 1: Socially optimal solution with Individual Rationality

Let χ : Cm × N → {0, 1}, such that χ(C, i) = 1 if i ∈ C, and χ(C, i) = 0 otherwise. The

restriction on the shares of driving δ is the following:

0 ≤ δ(C, i) ≤ χ(C, i), for all (C, i) ∈ Cm ×N, (1)

which ensures that the shares are non-negative, do not exceed 1 and are zero for players who

do not belong to a given carpool. For carpool C define δ(C) :=
∑

i δ(C, i), measuring which

fraction of commuting events is completed by carpool C. We require that each player tasks

are fully completed: ∑
C

δ(C)χ(C, i) = 1, for all i. (2)

We also allow switching carpools, i.e., driving or riding in different carpools on different

commuting events. By doing this we must rule out that a given commuter is active in two

or more different carpools simultaneously. Note that (2) alone is not sufficient. For example

let N = {1, 2, 3} and δ({1, 2}) = δ({1, 3}) = δ({2, 3}) = 0.5. This solution satisfies (2),

yet it requires the players to be simultaneously in two different carpools. On the other

hand, the solution δ({1, 2}) = δ({1, 3}) = δ({3}) = δ({2}) = 0.5 can be implemented with

the following two coalition structures each occurring half of the time: {{1, 2}, {3}} and

{{1, 3}, {2}}. We thus impose the following extra restriction. For each coalition structure P

let θ(P ) ≥ 0 be its share. We define χ′ : Pm × Cm → {0, 1}, where χ′(P,C) = 1 if C ∈ P ,
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and χ′(P,C) = 0 otherwise. We add θ(P ) to the set of controls and require:

∑
P

θ(P )χ′(P,C) = δ(C), for all C, (3)

∑
P

θ(P ) = 1. (4)

Note that (3) and (4) imply (2) (see Proposition 1 below), but the converse direction does

not hold. If costs were fully transferable, the optimal solution would be to assign players to

carpools and drivers within each carpool to minimize the overall cost and then (to encourage

participation) transfer costs to ensure stability. Here we are interested in the case in which

costs are not fully transferable.

Yet, we insist the the allocation scheme be stable. We assume that the players consider

the average driving cost, not the cost incurred on individual commuting events. In particular,

each player refuses to drive more on average than when commuting alone. We thus impose

the following restriction:

∑
C

δ(C, i)c(C, i) ≤ c(i) (5)

And so, our first-stage problem (referred to as M-PART IR) is as follows:

min
δ(C,i),θ(P )

{∑
i

∑
C

δ(C, i)c(C, i)

}
, (6)

s.t. 0 ≤ δ(C, i) ≤ χ(C, i), ∀C, i,∑
P

θ(P )χ′(P,C) = δ(C), ∀C, (7)

∑
P

θ(P ) = 1, θ(P ) ≥ 0, ∀P, (8)

∑
C

δ(C, i)c(C, i) ≤ c(i), ∀i. (9)

14



IR (9) holds in a strong sense; namely, it does not require cost transfers between players.

Note that, without this constraint, the problem would reduce to a simple assignment task.

In such a case it would be optimal to set δ(C) = δ(C, i) for i = arg mini∈C c(C, i)
4. Setting

c(C) := mini∈C c(C, i), would turn the problem into:

min
0≤δ(C)

{∑
i

∑
C

δ(C)c(C)

}
(10)

s.t.
∑
C

δ(C)χ(C, i) = 1, for each i, (11)

which is equivalent to finding a socially optimal value of the grand coalition in a carpooling

game with transferable cost. Ensuring implementability in coalition structures would also

be easy in this case, as requiring δ(C) to be binary combined with (11) forces the solution to

form a single coalition structure. Without (9), such a degenerate solution (a single coalition

structure played with probability 1) always belongs to the set of optimal solutions. For the

next step we need to introduce some additional notation. Let the arguments solving (6)

be denoted by δ∗ and θ∗. We also define the cost of driving incurred by each driver in the

solution as: c∗(i) :=
∑

C δ
∗(C, i)c(C, i).

5.2 Step 2: Constructing Incentive Compatibility constraints

As argued in the previous section, when restriction (5) is added, the game cannot be reduced

to the characteristic function game. This means that the cost of each carpool depends not

only on the identity of its members but also on their driving shares in this coalition. Thus,

before we add the IC constraints to ensure stability, we must first determine the lowest cost

of each coalition in the presence of the IR constraint (5). In doing this we assume that

only carpools (coalitions of size not exceeding m) can make valid objections to the proposed
4If argmini∈C c(C, i) is multi-valued, choose exactly one of its elements.
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allocation, i.e., for each carpool C we solve the following auxiliary problem:

min
0≤δ(C,i)≤χ(C,i)

∑
i

δ(C, i)c(C, i) (12)

s.t.
∑
i

δ(C, i) = 1,

c(C, i)δ(C, i) ≤ c(i), for each i ∈ N.

A solution to this problem always exists in the case of PDC (see Proposition 3, in Ap-

pendix A). In this case, since the problems in (12) for each C are fully separable, they can

be combined into a single one (call it the IC problem) that gives the same solution:

min
0≤δ(C,i)≤χ(C,i)

{∑
C

∑
i

δ(C, i)c(C, i)

}
(13)

s.t.
∑
i

δ(C, i) = 1, for each C,

c(C, i)δ(C, i) ≤ c(i), for each i and each C.

In TFC, in which violations of subadditivity occur, and thus the solution to (13) might

not exist, we need to solve the following relaxed optimization problem to find for each carpool

the maximum total driving share under the IT constraints:

max
0≤δ(C,i)≤χ(C,i)

{∑
C

∑
i

δ(C, i)

}
(14)

s.t.
∑
i

δ(C, i) ≤ 1, for each C,

c(C, i)δ(C, i) ≤ c(i), for each i and each C.

Let the solution to (14) be denoted by δ′′(C, i). It may be that
∑

i δ
′′(C, i) < 1. In such cases

we replace the
∑

i δ(C, i) = 1 constraint from the original IC problem (13) with
∑

i δ(C, i) =∑
i δ
′′(C, i). The resulting IC problem is then solved as before.

Denote by δ′(C, i) the optimal solution to (13) and define the lowest cost satisfying the

IR constraint for each coalition as c̄(C) :=
∑

i δ
′(C, i)c(C, i). This will be an input to the
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Step 3 problem.

5.3 Step 3: Finding the stable pre-nucleolus

If the core exists, the pre-nucleolus belongs to the core. If it doesn’t, the prenucleolus is

close to the core: in this case we determine the amount of external transfers (or positive net

transfers) to ensure full stability. We introduce transfers to achieve incentive compatibility.

Note also that, even if individual rationality is fulfilled before transfers are made (5), it may

not be the case after transfers are made. So, we need to have the post-transfer IR constraint

as well. The transfers are used to reallocate existing resources between players but stability

may also require external transfers, which are added to the system. In order to compute

the stable pre-nucleolus, we use the procedure introduced in Faigle et al. (2001) involving a

sequence of LP problems5.

Let t ∈ Rn denote cost transfers between players. For each carpool we define excess

as e(C, t) = c̄(C) −
∑

i∈C (c∗(i)− t(i)). Here, c∗(i) is the cost of driving incurred by each

driver in the IR solution (obtained in Step 1), and c̄(C) is the lowest cost satisfying the IR

constraint for each coalition (obtained in Step 2). We then solve:

minimizet∈RN z (15)

s.t. 0 ≤ e(C, t) ≤ z, for all C ∈ Cm,

c∗(i)− t(i) ≤ c(i) for all i ∈ N.

Let z1 be the optimal value of the above problem. Let S1 denote the set of all coalitions that
5A general scheme for computing the pre-nucleolus in a form of a sequential linear program was first

introduced in (Maschler et al., 1979).
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are binding in the corresponding optimal solution. Then we solve the following problem:

minimizet∈RN ,z∈R {z} (16)

s.t. e(C, t) = z1, for all C ∈ S1

0 ≤ e(C, t) ≤ z, otherwise

c∗(i)− t(i) ≤ c(i) for all i ∈ N.

Let z2 be the optimal value of the above problem. Let S2 denote the set of all coalitions that

are binding in the corresponding optimal solution. We then continue by solving for i:

minimizet∈RN ,z∈R {z} (17)

s.t. e(C, t) = zi, for all C ∈ Si, i ∈ {1, 2, ..., i− 1},

0 ≤ e(C, t) ≤ z, otherwise

c∗(i)− t(i) ≤ c(i) for all i ∈ N.

until all constraints are binding at some step. As a result of this sequential procedure we

obtain a sequence z1 > z2 > ... > zk. The optimal solution is unique and forms the stable

pre-nucleolus of the carpooling game.

In the theoretical worst-case scenario, the length of the sequence, i.e., the number of LPs

to be solved in Step 3 will be equal to the number of coalitions in Cm. In practice, however,

the length of the sequence is much smaller and did not exceed 19 in all our experiments.

6 The Solution Algorithm to Step 1

Note that the optimization problems outlined in steps 2 and 3 are computationally less

demanding than that in step 1, which requires listing all partitions Pm (m ≤ n). Therefore,

we define two simpler problems and prove that they form tight lower and upper bounds
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on the original problem. These two problems require the enumeration of coalitions but not

partitions. Recall, that for both the TFC and PDC models, we consider only the shortest

path. In the case of passenger cars, this involves finding the shortest path among a small

number of locations (usually, up to 6). This makes the total enumeration of coalitions

possible for practical problems with more than a hundred commuters.

6.1 Tight lower and upper bounds

The first problem differs from the M-PART IR in that it does not require the solution to

form a coalition structure (partition). It replaces (3) and (4) with (2). It is an LP problem

with |N | × |Cm| decision variables.

NO-PART IR

min
δ(C,i)

{∑
i

∑
C

δ(C, i)c(C, i)

}
, (18)

s.t. 0 ≤ δ(C, i) ≤ χ(C, i), ∀C, i,∑
C

δ(C)χ(C, i) = 1, ∀i, (19)

∑
C

δ(C, i)c(C, i) ≤ c(i), ∀i.

The second problem requires the solution to form a partition, but instead of allowing all

possible partitions in Pm, it will restrict the solution to be implementable and optimal in

the class of single coalition structure problems.
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1-PART IR

min
δ(C,i),γ(C)

{∑
i

∑
C

δ(C, i)c(C, i)

}
, (20)

s.t. 0 ≤ δ(C, i) ≤ χ(C, i), ∀C, i.∑
C

δ(C)χ(C, i) = 1, ∀i, (21)

γ(C) = δ(C), ∀C, (22)

γ(C) ∈ {0, 1}, ∀C, (23)∑
C

δ(C, i)c(C, i) ≤ c(i), ∀i.

Similarly to problem (10), partition-implementability in the above problem is ensured by

requiring the decision variable γ(C), or δ(C) in (10), to be binary. The difference is that

in the presence of the IR constraints (5), the single partition solution may not be optimal

in the class of all partition-implementable solutions, but only in those that contain a single

partition. This leads to the following proposition, the proof of which is given in Appendix

A.

Proposition 1 (Lower and upper bounds). The optimal overall cost of M-PART IR is no

greater than that of 1-PART IR and no smaller than that of NO-PART IR. Moreover, these

bounds are tight, i.e., there are instances such that the optimal cost in M-PART IR is equal

to that in 1-PART IR and/or equal to that in NO-PART IR.

6.2 The algorithm

In general, our model requires the total enumeration of multi-restricted coalitions and par-

titions with the size of the latter approaching the Bell B number (Bn) (see, e.g., Bényi and

Ramírez (2019)) for the number of players. To make the model practical, we propose an
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effective algorithm that can be used to obtain a solution for larger problems, for which all

coalitions (but not partitions) can be enumerated. This approach will work even if a subset

of all possible coalitions is selected.

1. Find the NO-PART IR solution and determine the coalitions in the solution.

2. Use Algorithm X (Knuth, 1999) to partition the coalitions.

3. If Algorithm X terminates successfully, i.e., finds a partitioning of the set of coalitions,
go to Step 5.

4. Otherwise,i.e., when partitioning of the set is not possible, solve the 1-PART IR prob-
lem, unionize the coalitions from the solution with those from Step 1 and apply Algo-
rithm X again.

5. If only one partition is formed, then it is the solution. STOP.

6. Otherwise, solve the M-PART IR model using the partitions formed by Algorithm X
and the corresponding coalitions as input.

Although Algorithm X ’s worst-case computational complexity is exponential, such cases

almost never occur in practical applications. Note that, if Algorithm X terminates success-

fully in Step 3 (and all coalitions are considered), the final solution is optimal by Proposition

1. Otherwise, the solution is a heuristic solution (upper bound on the minimum cost). In

addition, since by Proposition 1 the NO-PART IR solution is a lower bound on the minimum

cost, managers can determine the quality of the heuristic solution by comparing it to the

bound. The reader is referred to Appendix B for suggested techniques for selecting candidate

pools and partitions.

7 An illustrative example

Here, we illustrate the solution approach and its intuitions using a simple example. Consider

a TFC carpooling type with n = 12 andm = 4, i.e., 12 commuters driving to work daily, each

car having 4 seats. The commuters’ locations are depicted in Figure 1 and the destination

is marked with a circle. The goal is to minimize the total Euclidean distance traveled by
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Figure 1: Location map for the illustrative example

Table 1: Driving distances in various solutions
Commuter 1 2 3 4 5 6 7 8 9 10 11 12 Total
Base 0.78 1.17 0.91 0.39 0.97 0.35 0.81 0.43 0.12 1.05 1 0.98 8.98
NO-PART IR 0 0.6 0.91 0 0.97 0 0.17 0 0.09 0.38 0.62 0.98 4.72
1-PART IR 0 1.17 0.91 0.08 0.97 0 0.15 0 0 0.12 1 0.44 4.84
M-PART IR 0 1.17 0.91 0.02 0.97 0 0.15 0 0 0 1 0.58 4.81
PART NO-IR 0 1.27 1.05 0 1.02 0 0 0 0 0 1.4 0 4.75

all commuters. Table 1 shows players’ driving distances for different solutions. The base

distance is 8.98, which is the distance traveled when everyone commutes alone. PART NO-

IR is the centralized solution (10), in which the following carpools are formed (drivers are

emphasized): {3, 7}, {1,2, 10}, {4,5, 9}, {6, 8,11, 12}. The overall distance is 4.75, and the

difference from the base, i.e., 4.23 is the potential reduction in vehicle miles traveled. Yet,

if costs are not fully transferable, this centralized solution is not stable. In particular, the

drivers (commuters 2, 3, 5, 11) drive on average more than without carpooling.

One way to ensure individual rationality is to rotate the drivers in each carpool. This

is achieved in the 1-PART IR solution, where the optimal partition remains the same but

the driving responsibility is shared shared among the carpool members (see Table 2 for the

Table 2: Driving shares in the 1-PART solution
Carpool 1 2 3 4 5 6 7 8 9 10 11 12 Sum

3, 7 0.87 0.13 1
1, 2, 10 0.92 0.08 1
4, 5, 9 0.05 0.95 1

6, 8, 11, 12 0.71 0.29 1
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Table 3: Driving shares in the M-PART solution
Carpool 1 2 3 4 5 6 7 8 9 10 11 12 Sum

3, 7 0.87 0.13 1.00
4, 9 0.05 0.05

1, 2, 10 0.92 0.92
4, 5, 9 0.95 0.95

6, 8, 12 0.03 0.03
1, 2, 10, 11 0.08 0.08
5, 6, 8, 12 0.05 0.05

6, 8, 11, 12 0.62 0.3 0.92
Note: Drivers are marked in bold

Table 4: Partitions and their shares in the M-PART IR solution
Partitions Partition share
3, 7 1, 2, 10 4, 5, 9 6, 8, 11, 12 0.9201
3, 7 1, 2, 10, 11 4, 9 5, 6, 8, 12 0.0514
3, 7 1, 2, 10, 11 4, 5, 9 6, 8, 12 0.0285

solution). In this solution players cannot change carpools (there is only one partition). One

can improve this solution by allowing such possibility: this is the case of the M-PART IR

solution presented in Table 3, where multiple partitions are allowed. For example commuter

11 acts as a driver in carpool {1, 2, 10, 11} (share of 0.08) and both as a driver (share of 0.62)

and as a rider (share of 0.3) in carpool {6, 8, 11, 12}.

Here, the solution to M-PART IR is exact, yet due to the problem complexity (the number

of all pools increases exponentially – and the number of partitions faster than exponentially

– with the number of commuters) larger problems often allow only for approximations. By

Proposition 1, 1-PART IR and NO-PART IR are, respectively, the upper and lower bounds.

In the example considered, the objective of 1-PART IR is only slightly higher (4.84) than

that of M-PART IR (4.81).

In both M-PART and 1-PART, the solutions have to be implementable in coalition struc-

tures. Table 4 shows how the individual carpool shares translate into partition shares for

the M-PART IR case. On the other hand, NO-PART IR does not require carpools to form

partitions. In this case, IR are ensured only by switching carpool membership, but within

each carpool only a single commuter acts as a driver. However, this is not a valid solution
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Table 5: The stable pre-nucleolus solution: transfers and cost after transfers
1 2 3 4 5 6 7 8 9 10 11 12 Sum

Cost 0 1.17 0.91 0.02 0.97 0 0.15 0 0 0 1 0.58 4.81
Transfer 0.34 -0.65 -0.31 0.16 -0.18 0.11 0.31 0.19 -0.09 0.43 -0.59 -0.04 -0.32
Net cost 0.34 0.52 0.6 0.18 0.79 0.11 0.46 0.19 -0.09 0.43 0.41 0.54 4.49

because it might require a single commuter to act as a driver and a rider in two different

carpools at the same time, i.e., in a single commuting event.

The second step of the solution algorithm involves constructing incentive compatibility

constraints. We thus solve the IC problem (13) with further modifications for TFC in order

to get the minimum cost in the presence of the IR constraint c̄(C) for each carpool. For

example, it is 1.068 for carpool {3, 7} (the same as the total driving cost of 3 and 7 in the

M-PART and 1-PART solution), and 2.868 for carpool {1, 2, 3}, which results from splitting

driving among all three members. In what follows, we do not explicitly present the results

of this auxiliary intermediate step.

After completing the second step, we compute the stable pre-nucleolus and report its

solution in Table 5. “Cost” in the first row corresponds to the driving distance from the

M-PART IR solution. Even though IR is satisfied and nobody drives more than with no

carpooling, the driving cost is distributed unevenly among commuters, and it does not

reflect their strategic positions. For example, commuters 1, 6, 8, 9, 10 do not drive at all,

while 2, 3, 5, 11 drive as much as when commuting alone. In order to restore full stability

and fairness (in the sense of minimizing the largest excess), it is necessary to introduce cost

transfers. In this case it is not sufficient to redistribute existing costs among commuters

while keeping the sum of cost equivalent constant, but rather one has to add extra transfers

from the outside of the system. This is reflected in the sum of transfers being negative,

which determines the cost of achieving a stable and fair solution. Costs are redistributed so

that driving is spread among the commuters. This spread is far from even because it reflects

the strategic position of each commuter. Indeed, the net cost per each of the commuters:

2, 3, 5, 12 is much higher than that of commuters: 4, 6, 8, 9. This is because the commuters in
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the former group are located farther from the destination than those from the latter group.

But this is not always the case because the cost after transfer of commuter 2 is lower than

that of commuter 5, even though 2 is located farther from the destination. This, in turn, is

due to the strategic positions of 2 and 5: in the optimal solution 2 always pools with 1, 10

(and sometimes also with 11), while 5 pools mostly with 4 and 9. Such an arrangement

is natural because their respective partners are close to the line connecting them with the

destination or “on the way.” However, while 1 and 10 have a long way to travel (just like 2,

4 and 9), they are located much closer to the destination as compared to 5. It means that

the strategic position of 5 is weaker than that of 2, who can share driving more evenly with

other carpool members. Note that the position of 9 is so strong that its net cost is negative.

This is so because 9 does not need anyone to pool with whereas other participants need 9.

8 Computational Experiments

All experiments were run on a virtualized Linux Ubuntu 20.04 LTS environment with 38

vCPUs and 374GB of vRAM. The physical server used was a VxRail V570F with Intel Xeon

Gold 6248 @ 2.5GHz (2 sockets, 20 cores per processor, 80 logical processors), 748GB RAM,

and VMware vSAN storage. Mathematica 13.0 was used for mathematical modeling and

generating sparse matrices and vectors for linear programs. All linear programs were solved

with Gurobi 9.5. Matlab R2021b was used to control Gurobi.

In order to validate the proposed solution approach, we first tested it on a set of smaller

problems, for which (the optional) total enumeration of pools and partitions is possible in

reasonable time.

To this end, we randomly generated 35 instances with n = 12, m = 4, i.e., with 793

carpools and 3, 305, 017 set partitions. The coordinates of these simulated instances are

available in our Open Science Framework repository at https://osf.io/z9fb3/. The goal is to

minimize the total travel distance, assumed to be Euclidean.
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Tables 6-9 present the results of numerical experiments on the simulated instances. All

enumerations in these tables are total and all solutions are optimal. The instance identifier

is in the first column, and Base shows the total travel distance without carpooling. M-PART

IR is the Step 1 solution objective, while NO-PART IR and 1-PART IR are its lower and

upper bounds. The number of set partitions in the M-PART IR solution is denoted by p.

Sav. are the relative savings as compared to Base, Gap is the relative difference between the

M-PART IR and the NO-PART IR (LB) objectives, and M vs. 1 is the percentage point gain

in relative savings due to considering multiple partitions as compared to a single partition

solution.

Tables 6 and 7 show the results of Step 1 of our optimization procedure for TFC and the

PDC carpooling models respectively. Note that all solutions to the simulated instances are

optimal because we consider all carpools and partitions. The savings were generally higher

for the PDC case with the average of 54.6%, compared to 41.89% for the TFC case. Bounds

established by Proposition 1 are tight. This is confirmed by the optimal cost (M-PART IR)

being equal to the cost of LB (NO-PART IR) for some cases and equal to the cost of UB

(1-PART IR) in some other cases. In fact, there were instances in which:

• the three solutions coincided (indicated by a 0% gap, e.g., TFC: R4, PDC: R2)

• M-PART coincided with the UB, but not with LB (e.g., TFC: R13, PDC: R1)

• M-PART coincided with the LB, but not with the UB (e.g., TFC: R14, PDC: R3)

• all three solutions differed (e.g., TFC: R2, PDC: R4).

This is shown in the tables by emphasizing the coinciding solutions. The average time to solve

a single NO-PART IR, 1-PART IR, and M-PART IR TFC (PDC) problem was 0.02 (0.02),

0.11 (0.29), and 514 (466) seconds respectively. The fact that 1-PART is generally solved

more than 100 times faster than M-PART, and that the loss of savings due to considering

one instead of multiple partitions is rather low (the maximum out of all instances was 1.8 pp.
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Table 6: The individually rational (Step 1) solutions to simulated carpooling instances –
TFC

Inst. Base NO-PART
IR (LB)

1-PART
IR (UB)

M-PART
IR p

Sav.
[%]

Gap
[%]

M vs. 1
[pp]

R1 9.147 5.644 5.662 5.644 4 38.30 0.01 0.20
R2 8.145 5.195 5.234 5.203 3 36.12 0.15 0.38
R3 9.024 5.780 5.818 5.780 3 35.95 0.00 0.42
R4 8.333 5.220 5.220 5.220 1 37.35 0.00 0.00
R5 12.089 6.754 7.241 7.098 4 41.29 5.09 1.19
R6 10.803 6.296 6.296 6.296 1 41.72 0.00 0.00
R7 10.149 5.486 5.528 5.490 3 45.90 0.07 0.37
R8 10.344 6.197 6.323 6.199 3 40.07 0.04 1.20
R9 9.045 4.359 4.389 4.387 2 51.50 0.65 0.02
R10 9.382 5.438 5.623 5.561 3 40.73 2.25 0.67
R11 9.373 4.710 4.821 4.820 2 48.58 2.34 0.01
R12 8.946 5.333 5.333 5.333 1 40.39 0.00 0.00
R13 11.165 5.949 6.047 6.047 1 45.84 1.65 0.00
R14 7.645 4.410 4.411 4.410 2 42.32 0.00 0.01
R15 9.088 5.587 5.640 5.594 2 38.44 0.12 0.51
R16 10.093 5.839 5.915 5.847 3 42.07 0.14 0.68
R17 8.556 4.368 4.368 4.368 1 48.95 0.00 0.00
R18 8.669 5.318 5.447 5.348 3 38.31 0.56 1.14
R19 9.214 5.647 5.828 5.662 5 38.56 0.27 1.80
R20 8.975 4.721 4.843 4.809 3 46.42 1.85 0.38
R21 7.654 4.612 4.652 4.612 3 39.75 0.00 0.53
R22 9.852 5.401 5.401 5.401 2 45.18 0.00 0.01
R23 8.588 5.133 5.184 5.133 3 40.23 0.00 0.59
R24 10.661 5.274 5.314 5.314 1 50.16 0.76 0.00
R25 9.757 4.660 5.097 5.097 1 47.76 9.37 0.00
R26 10.054 5.991 6.043 5.991 2 40.41 0.00 0.52
R27 9.479 5.298 5.368 5.335 3 43.71 0.70 0.34
R28 9.371 6.018 6.205 6.058 6 35.35 0.68 1.56
R29 6.918 3.927 3.984 3.981 2 42.45 1.39 0.03
R30 9.655 5.626 5.653 5.626 3 41.73 0.01 0.28
R31 10.502 6.029 6.067 6.061 3 42.28 0.54 0.05
R32 9.823 5.726 5.902 5.896 3 39.98 2.98 0.05
R33 7.868 4.867 4.895 4.889 3 37.86 0.45 0.07
R34 8.389 4.995 5.076 4.995 4 40.46 0.00 0.97
R35 7.038 4.190 4.254 4.209 3 40.19 0.46 0.64

Optimal solutions which coincide with the NO-PART IR or 1-PART IR solutions are emphasized.

for TFC and 0.7 pp. for PDC). This suggests that 1-PART solutions might be sufficiently

good for larger practical applications. They are considerably easier to implement as each

commuter is assigned to only a single carpool and savings are comparable to the M-PART
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solution.

Table 7: The individually rational (Step 1) solutions to simulated carpooling instances –
PDC

Inst. Base NO-PART
IR (LB)

1-PART
IR (UB)

M-PART
IR p

Sav.
[%]

Gap
[%]

M vs. 1
[pp]

R1 18.294 8.653 8.654 8.654 1 52.70 0.00 0.00
R2 16.289 7.961 7.961 7.961 1 51.13 0.00 0.00
R3 18.048 8.890 8.966 8.890 2 50.74 0.00 0.42
R4 16.666 7.789 8.074 7.992 2 52.05 2.60 0.49
R5 24.178 10.483 10.649 10.600 2 56.16 1.11 0.20
R6 21.606 9.666 9.738 9.683 3 55.18 0.18 0.25
R7 20.297 8.866 8.866 8.866 1 56.32 0.00 0.00
R8 20.688 8.879 8.879 8.879 1 57.08 0.00 0.00
R9 18.090 7.202 7.202 7.202 1 60.19 0.00 0.00
R10 18.764 8.461 8.702 8.685 2 53.71 2.66 0.09
R11 18.747 7.547 7.704 7.682 2 59.02 1.79 0.12
R12 17.892 8.486 8.493 8.488 2 52.56 0.02 0.03
R13 22.329 9.339 9.687 9.639 2 56.83 3.20 0.22
R14 15.291 6.967 7.238 7.130 4 53.37 2.34 0.70
R15 18.175 8.370 8.370 8.370 1 53.95 0.00 0.00
R16 20.185 9.449 9.815 9.789 2 51.50 3.60 0.13
R17 17.111 6.999 6.999 6.999 1 59.10 0.00 0.00
R18 17.337 7.556 7.558 7.558 1 56.41 0.03 0.00
R19 18.429 8.525 8.687 8.652 2 53.05 1.48 0.19
R20 17.950 7.672 8.017 8.017 1 55.34 4.50 0.00
R21 15.309 7.127 7.127 7.127 1 53.45 0.00 0.00
R22 19.704 7.987 7.987 7.987 1 59.46 0.00 0.00
R23 17.176 7.787 7.797 7.797 1 54.60 0.13 0.00
R24 21.321 8.959 9.251 9.251 1 56.61 3.25 0.00
R25 19.513 8.079 8.269 8.269 1 57.62 2.35 0.00
R26 20.109 9.039 9.039 9.039 1 55.05 0.00 0.00
R27 18.958 8.610 8.719 8.717 2 54.02 1.25 0.01
R28 18.743 8.891 8.986 8.891 2 52.56 0.00 0.50
R29 13.836 6.410 6.410 6.410 1 53.67 0.00 0.00
R30 19.311 8.886 9.132 9.011 2 53.34 1.40 0.63
R31 21.003 9.817 9.971 9.970 2 52.53 1.56 0.00
R32 19.647 9.264 9.426 9.378 2 52.27 1.23 0.25
R33 15.735 7.737 7.859 7.782 2 50.54 0.58 0.49
R34 16.778 7.522 7.554 7.522 2 55.17 0.00 0.19
R35 14.077 6.378 6.566 6.503 3 53.80 1.96 0.45

Optimal solutions which coincide with the NO-PART IR or 1-PART IR solutions are emphasized.

Tables 8 and 9 summarize the results of Step 3 of our optimization procedure for the

TFC and PDC carpools respectively. They show the Base and Step 1 solution objective
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Table 8: The stable pre-nucleolus (Step 3) solutions to the simulated instances – TFC

Inst. Base PART
NO IR

M-
PART

IR

Net
Tr.

Max
Tr.

Min
Tr.

Loss
IR [pp.]

Cost of
IC [pp.]

R1 9.147 5.512 5.644 -0.286 0.498 -0.421 1.44 3.13
R2 8.145 5.040 5.203 -0.343 0.414 -0.456 2.00 4.21
R3 9.024 5.673 5.780 -0.402 0.336 -0.306 1.19 4.46
R4 8.333 5.063 5.220 -0.000 0.271 -0.450 1.89 0.00
R5 12.089 6.875 7.098 -0.517 0.630 -0.769 1.84 4.27
R6 10.803 6.207 6.296 -0.000 0.639 -0.528 0.82 0.00
R7 10.149 5.352 5.490 -0.161 0.317 -0.739 1.37 1.58
R8 10.344 6.063 6.199 -0.010 0.663 -0.552 1.32 0.09
R9 9.045 4.340 4.387 -0.656 0.478 -0.519 0.52 7.26
R10 9.382 5.435 5.561 -0.596 0.545 -0.624 1.34 6.36
R11 9.373 4.799 4.820 -0.564 0.415 -0.465 0.22 6.02
R12 8.946 5.198 5.333 -0.047 0.498 -0.623 1.51 0.53
R13 11.165 5.954 6.047 -1.063 0.502 -0.549 0.83 9.52
R14 7.645 4.263 4.410 -0.320 0.331 -0.421 1.92 4.18
R15 9.088 5.375 5.594 -0.137 0.472 -0.542 2.41 1.51
R16 10.093 5.745 5.847 -0.262 0.276 -0.587 1.01 2.60
R17 8.556 4.190 4.368 -0.328 0.430 -0.457 2.08 3.83
R18 8.669 5.248 5.348 -0.412 0.614 -0.388 1.15 4.75
R19 9.214 5.465 5.662 -0.000 0.534 -0.504 2.14 0.00
R20 8.975 4.748 4.809 -0.316 0.429 -0.651 0.67 3.52
R21 7.654 4.378 4.612 -0.112 0.334 -0.378 3.06 1.46
R22 9.852 5.353 5.401 -0.957 0.463 -0.502 0.49 9.72
R23 8.588 5.044 5.133 -0.259 0.517 -0.498 1.04 3.01
R24 10.661 5.238 5.314 -0.144 0.426 -0.623 0.71 1.35
R25 9.757 4.902 5.097 -0.751 0.395 -0.619 2.00 7.69
R26 10.054 5.775 5.991 -0.245 0.406 -0.543 2.15 2.44
R27 9.479 5.192 5.335 -0.506 0.450 -0.651 1.52 5.33
R28 9.371 5.932 6.058 -0.077 0.521 -0.451 1.35 0.82
R29 6.918 3.894 3.981 -0.353 0.211 -0.410 1.26 5.10
R30 9.655 5.533 5.626 -0.954 0.603 -0.613 0.97 9.88
R31 10.502 5.968 6.061 -0.654 0.440 -0.705 0.89 6.22
R32 9.823 5.793 5.896 -0.274 0.416 -0.715 1.05 2.79
R33 7.868 4.680 4.889 -0.498 0.504 -0.336 2.66 6.33
R34 8.389 4.897 4.995 -0.156 0.462 -0.474 1.17 1.86
R35 7.038 4.116 4.209 -0.091 0.287 -0.361 1.33 1.30

(M-PART IR). PART NO IR is the centralized solution objective, which does not require

IR. It is compared to the decentralized solution (M-PART IR) in the Loss IR column, which
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gives the loss of savings (relative to Base) due to IR. Net Tr. gives the net cost equivalent

needed to be exogenously added to the system to ensure stability (IC and IR after transfers).

Max Tr. and Min Tr. are, respectively, the maximum and the minimum individual transfer

of cost equivalent. Finally, Cost of IC is the ratio of what has to be added to the system to

ensure stability (i.e., the negative of net transfers) to the Base solution objective.

Meeting the incentive compatibility constraints turns out to be costly in both TFC and

PDC carpooling types. This is reflected in net transfers being strictly negative for most of

the instances. Only three instances in the TFC and two in PDC did not incur additional cost.

Even if the net transfer is zero, meaning that the core is nonempty and stability does not

require an outside cost, some transfers between commuters are generally needed to ensure

stability. This is for example the case for R4 in TFC carpooling, in which net transfer is

zero, yet the minimum transfer is -0.450 and the maximum transfer is 0.271.

The loss due to IR can be directly compared to the cost of IC, as both are shown relative

to the base. The mean value of Loss IR (3.8 pp. for TFC and 2.46 pp. for PDC) was

substantially larger than the mean value of the Cost of IC (1.41 pp. for TFC and 0.28 pp.

for PDC). It suggests that IC is, in general, more costly than IR. However, there are cases

in which the opposite is true (e.g. R21 for TFC and R18 for PDC).

9 Discussion and concluding remarks

In this paper, we define carpooling as a new class of coalition games. We provide a three-step

procedure to obtain a stable solution to the carpooling game. In the first step, we determine

socially-optimal coalition structures, which also satisfy the individual rationality constraints.

Our solution achieves individual rationality in the long run with no utility (cost) transfers,

but only by appropriate switching of carpool membership and of driving vs. riding roles

within each carpool. Cost transfers are added only at a later stage to ensure full stability.

We construct incentive compatibility constraints in the second step and, finally, obtain a
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Table 9: The stable pre-nucleolus (Step 3) solutions to the simulated instances – PDC

Inst. Base PART
NO IR

M-
PART

IR

Net
Tr.

Max
Tr.

Min
Tr.

Loss
IR [pp.]

Cost of
IC [pp.]

R1 18.294 8.650 8.654 -0.172 0.801 -0.952 0.02 0.94
R2 16.289 7.842 7.961 -0.019 0.870 -1.042 0.73 0.12
R3 18.048 8.799 8.890 -0.016 1.150 -0.916 0.51 0.09
R4 16.666 7.987 7.992 -0.689 0.916 -1.098 0.03 4.13
R5 24.178 10.495 10.600 -0.561 1.098 -1.511 0.43 2.32
R6 21.606 9.602 9.683 -0.280 1.285 -1.410 0.37 1.30
R7 20.297 8.866 8.866 -0.545 0.941 -1.589 0.00 2.69
R8 20.688 8.834 8.879 -0.064 1.547 -1.332 0.22 0.31
R9 18.090 7.187 7.202 -0.217 1.011 -1.177 0.08 1.20
R10 18.764 8.588 8.685 -0.544 1.269 -1.225 0.52 2.90
R11 18.747 7.675 7.682 -0.453 1.312 -1.105 0.04 2.42
R12 17.892 8.465 8.488 -0.806 1.098 -0.949 0.13 4.51
R13 22.329 9.533 9.639 -0.638 1.390 -1.192 0.47 2.86
R14 15.291 7.114 7.130 -0.341 1.289 -0.919 0.10 2.23
R15 18.175 8.342 8.370 -0.162 1.031 -1.087 0.16 0.89
R16 20.185 9.628 9.789 -0.921 1.769 -1.261 0.80 4.56
R17 17.111 6.991 6.999 -0.005 0.932 -0.921 0.05 0.03
R18 17.337 7.492 7.558 0.000 1.154 -1.143 0.38 0.00
R19 18.429 8.650 8.652 -0.841 1.181 -0.923 0.01 4.56
R20 17.950 8.004 8.017 -0.571 1.208 -1.182 0.07 3.18
R21 15.309 7.091 7.127 -0.129 1.253 -0.953 0.23 0.84
R22 19.704 7.959 7.987 0.000 1.638 -1.078 0.14 0.00
R23 17.176 7.717 7.797 -0.041 1.160 -1.357 0.47 0.24
R24 21.321 9.249 9.251 -1.386 1.197 -1.401 0.01 6.50
R25 19.513 8.225 8.269 -0.683 1.366 -1.309 0.23 3.50
R26 20.109 9.038 9.039 -1.058 1.100 -1.459 0.00 5.26
R27 18.958 8.661 8.717 -1.418 1.168 -1.477 0.30 7.48
R28 18.743 8.862 8.891 -0.397 0.977 -1.018 0.16 2.12
R29 13.836 6.254 6.410 -0.141 1.071 -0.874 1.13 1.02
R30 19.311 8.946 9.011 -0.940 1.385 -0.824 0.34 4.87
R31 21.003 9.931 9.970 -0.752 1.338 -1.346 0.19 3.58
R32 19.647 9.208 9.378 -0.843 0.964 -1.382 0.86 4.29
R33 15.735 7.749 7.782 -0.195 1.538 -0.836 0.21 1.24
R34 16.778 7.496 7.522 -0.245 1.025 -1.047 0.16 1.46
R35 14.077 6.460 6.503 -0.359 1.048 -0.853 0.31 2.55

unique cost transfer allocation in the last step. Fairness is promoted by proposing the stable

pre-nucleolus-based solution that minimizes the maximum player dissatisfaction.
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Our results indicate that, for real-world instances, single-partition carpool arrangements

offer simplicity and savings, which do not justify using complex multi-partitioned arrange-

ments. This means that switching carpools for different trips does not offer such benefits

as switching roles (between drivers and riders) within fixed carpools. Therefore, our recom-

mended policy for real-world daily carpooling instances is to solve the 1-PART problem (a

mixed-integer linear program) for as many restricted coalitions as possible, determine trans-

fers among players (also by linear programs), and, if needed, supply the net transfer to the

system to ensure stability.

Our article omitted some important issues that may constitute interesting directions for

further research. For example, we assume that players only take into account driving costs

(driving time, distance). However, other costs, such as riding times, may be important in the

context of PDC and TFC carpooling. Including ride times is possible, but would require a

slightly different setup, where each carpool member’s ride times are recorded for each carpool

and each route (the order in which different players’ locations are visited) within the carpool.

However, in the case of PDC, the issue of riding times can be heuristically solved as follows.

Assume that in the optimal solution carpool C = {1, 2, 3, 4} is formed with some non-zero

share δ(C), and the shortest PDC path for this carpool (including the destination, denoted

as 0) is 123401. Assume for simplicity that the driving distance is directly proportional to

driving time. Due to symmetry of the metric, the total distance of this path is the same as

the total distance of the following alternative path 432104, which is another shortest PDC

path for the same carpool. However, these two paths mean different travel times for carpool

participants. In particular, by alternating these two routes, we can ensure equal travel time

for each participant. Indeed, the average riding time alternating these two routes is always

equal to half the total driving time on each of them. This heuristic solution equalizes the

travel time of carpooling participants.

Our model assumes that every commuter has a vehicle. We can relax this assumption by

adding a constraint to the first stage problem (6) that the driving share of a person without
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a vehicle is 0 in every carpool that contains this person. Then, in the third step (15) we

establish transfers (the price a commuter must pay to participate in the mechanism) that

ensure incentive compatibility. The only restriction is that the total number of seats cannot

be less than the number of commuters. The model assumes that the IR constraints are always

met. Alternatively, they can be treated as soft restrictions (penalized in the objective) or

restrictions that vary depending on the commuter’s preferences. Such a modification would

only change the Stage 1 problem.

Our approach focuses on a long time horizon in which optimal driving shares can be

implemented. Changes to the mix of players and their locations require solving a new

carpooling problem after each change. Solutions that require players not only to switch roles

(rider and driver) in a given carpool, but also to switch carpools, may also cause difficulties

and additional coordination costs. Although additional constraints can easily be added to the

optimization problem, we show in our numerical simulations that the 1-PART IR solution,

which does not require carpool switching, is very close to the M-PART IR solution. A

cost-benefit analysis may show that in some cases the 1-PART IR solution is sufficient.
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Online Appendix

A Proofs and additional propositions

Proof of Proposition 1

In order to prove the result we must prove that the set of feasible solutions in 1-PART IR is a

a subset of those in M-PART IR which in turn is a subset of those in NO-PART IR. We start

with the latter inclusion. Note that the M-PART IR constraints (7), and (8) jointly imply

the NO-PART IR constraint (19). To see it assume that the former hold. So, for each player

i we can rewrite the latter as:
∑

C

∑
P θ(P )χ′(P,C)χ(C, i) =

∑
P θ(P )

∑
C χ
′(P,C)χ(C, i).

Note that
∑

C χ
′(P,C)χ(C, i) = 1 since P is a partition, so the previous expression reduces

to
∑

P θ(P ) which equals 1 by (8).

We now prove that the set of feasible solutions in 1-PART IR is a subset of those in

M-PART IR. First note that the constraints (21), (22), and (23) in 1-PART IR imply that

the collection of C ∈ Cm for which γ(C) = 1 forms a single partition of N : each individual

belongs to exactly one carpool. Call this partition P ∗. Thus θ(P ∗) = 1 which verifies (8)

and by definition of χ′, 0 = δ(C) = χ′(P ∗, C) = 0 for C /∈ P ∗, and 1 = δ(C) = χ′(P ∗, C) for

C ∈ P ∗, which verifies (7).

Finally, we show that the bounds are tight. For TFC, Table 6 shows that there are

instances in which the overall cost in M-PART IR is equal to NO-PART IR (lower bound)

and/or to 1-PART IR (upper bound). The same is shown for PDC in Table 7.

Implications of a metric

Proposition 2. In the TFC game, for any two locations 1, s and a non-empty set of other

locations (2, ..., k), the shortest path between 1 and s via all the locations in (2, ..., k) is 12...ks

if and only if the shortest path between s and 1 via all locations in (2, ..., k) is sk...21.

Proof. Directly from the symmetry of a metric.
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Proposition 3. In the PDC game:

a) In each non-singleton carpool there are at least two members tied for driving.

b) The distance traveled is the same no matter whether the driver is located at its own

location or at the destination point.

c) For any nonempty carpool C and any order of visiting its members, the distance of

commuting together in this order is lower than the overall distance of each member of

C driving separately.

d) Minimum cost subadditivity: For any nonempty carpools A,B, d(A∪B) ≤ d(A)+d(B),

where for d(C) denotes the minimum distance PDC route for carpool C ∈ N , i.e.

d(C) = mini∈C c(C, i), where c is assumed to be a PDC cost.

e) Given two partitions P1, P2 of N . If P1 is finer than P2, then its overall minimum

distance is not less than that of P2.

Proof. a) This is so because the distance of 1...is1 is the same as that of is1...i, and by

symmetry of a metric, the latter is the same as that of i...1si.

b) By symmetry, the distance of 1...is1 is the same as that of s1...is.

c) Let C = {1, ..., k} be a carpool. Suppose that the commuters in C drive together with

a pre-specified (i.e., not necessarily the shortest) order of visited locations. Without loss of

generality let the order be 12...ks1. The distance corresponding to this route is the same

as that of the route s12...ks. If all commuters in C drive separately, each of them follows

the route isi, or equivalently sis. Hence, the overall route in this case can be written as

s1s2s...sks. Thus, driving together saves distance because, as compared to each participant

driving separately, it dispenses the need to visit many intermediate locations (s in between

the commuters), which by triangle inequality will not make the distance smaller.

d) Let C = {1, ..., k} be a carpool. Suppose that commuters in C drive together and player

f ∈ N \ C drives by itself. Let σ(1)σ(2)...σ(k)sσ(1) be the path taken by C with distance

2



d(C), where σ : C → C is the permutation of commuters in C which minimizes their distance.

The distance traveled by f is the distance of route fsf , which by symmetry of a metric is the

same as the distance of route sfs. Hence, the shortest total distance of carpools: C and f ,

i.e., d(C) +d(f), is the distance traveled if the following route is taken: sσ(1)σ(2)...σ(k)sfs.

On the other hand, we know by nonnegativity of a metric that d(C ∪{f}) is no greater than

the distance of the following route: sσ(1)σ(2)...σ(k)fs. In fact, this is the optimal route for

C with one additional location f visited just before s (which is one way of driving together

in carpool C ∪{f}, albeit not necessarily the optimal one). The two paths differ in that the

former has one extra intermediate location s, while the latter does not. Using the triangle

inequality, we thus obtain that d(C) + d(f) ≥ d(C ∪ {f}). We can repeat this argument

with adding more participants to C, finally proving the desired conclusion.

e) To prove it we use d). For two partitions P1 and P2 of N , if P1 is finer than P2 (i.e.,

for every C ∈ P1, there is C ′ ∈ P2 such that C ⊆ C ′ and P1 is distinct from P2), then∑
C∈P1

v(C) ≤
∑

C∈P2
v(C).

Note that point b) in Proposition 3 implies that the optimal distance in the PDC game

is the same when a parent drives their children to school, picks up other children from the

pool, drops off all children at the school, and returns home, or the school bus leaves the

school, picks up all children from the pool, and returns to the school.
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B Selecting pools and partitions for large instances

The number of set partitions increases rapidly with problem size. The following techniques

allow finding good approximate solutions to large instances.

Number of m-restricted partitions of a set of n elements

To find the number of set partitions of n elements with a coalition size restricted to at mostm

elements, we use the following generating function (see, e.g., Flajolet and Sedgewick, 2009):

G(z) =
(

exp
(
zj

j!

)
− 1
)

exp
(∑j−1

i=1
zi

i!

)
. Next, we find the coefficient of zn in the expansion

of G about the point z = 0 for each j = 1, 2, ..,m and multiply it by n!. Finally, we add

these numbers together to obtain the m-restricted set partition count of n elements.

For n = 12 and m = 4, this results in 1 + 140151 + 1540440 + 1624425 = 3305017. Note

that number 1 represents a partition with all coalitions restricted to a single participant; it

corresponds to the solution without carpooling, i.e., all participants drive alone.

Selecting candidate pools

The number of m-restricted non-empty coalitions that can be formed from a set of n partici-

pants (m ≤ n) is a sum of binomial coefficients (see above). Although the total enumeration

can be achieved even for instances with several hundred participants and a small pool size,

the resulting linear programs are too large for most computers to solve.

The number of coalitions (carpools) for larger instances can be limited using the following

pool-selection approach.

1. Enumerate all non-empty coalitions (pools) with at most m participants, and find the

centroid of each pool (including single-participant “pools”).

2. Weight each pool with the average distance from each participant’s origin to the line

passing through the destination and the pool’s centroid.
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3. If the angle between any two points of origin (with a vertex at the destination) of a

pool is greater than π/2, add a penalty (a very large positive number) to the weight

of that pool.

4. Add a penalty to all carpools, which contain points of origin located exactly at the

destination.

5. Select a limited number of candidate pools no less than n and no more than, e.g.,

300000 with the smallest weights. Note that all single “pools” have the weight equal to

zero and will be included in the selection.

Selecting candidate pools Ĉm allows us to find the lower bound (for this set of pools)

on the objective of the carpooling game with individual rationality using a linear program,

NO-PART IR (18). We also find the upper bound on the objective, i.e., a single-partitioned

solution, with a mixed-integer program 1-PART IR (20).

Selecting candidate partitions

Before we begin the selection process, we apply Algorithm X on the set of coalitions found

by NO-PART IR. If these coalitions form a full partition of the set of participants, this is

the final solution, and the lower bound is the best-known objective, i.e., the minimum total

distance driven by all participants for the selected pools.

Otherwise, following the solution algorithm, we consider partitions P̂m generated from a

union of pools from the NO-PART IR, 1-PART IR and up to five alternative 1-PART IR

solutions. The alternative 1-PART solutions are obtained with all previously-selected pools

removed. Fewer than five alternative solutions are used if Algorithm X takes longer than,

e.g., 5 hours to finish or generates more than a specified number (e.g. 10 million) partitions.

Still, the smallest union of pools to be partitioned consists of the pools identified by the NO-

PART IR and 1-PART IR in order to guarantee at least one full partition in the M-PART

IR solution.
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C Real-world instances

In this appendix we present the results of our computational experiments involving 35 Daily

Carpooling Problem instances used in Baldacci et al. (2004) also known as the University

of Bologna Carpooling Instances. Each of these instances consists of between 50 and 250

points of origin and an additional location designated as the destination. The original files

are available from the University of Bologna http://astarte.csr.unibo.it/data/. Rather than

using the distance matrices provided (rounded to integers), we computed accurate Euclidean

distances for the original integer coordinates. We assumed that each point of origin has

one commuter and a vehicle with m = 4 available seats. Instead of designating 25% of the

commuters as drivers as suggested by Baldacci et al. (2004), we allowed any of the commuters

to act as a driver. Also, we ignored the earliest leaving and latest arrival times, which led

to instances A4 and A5 being identical.

Our M-PART IR model (6) yields an optimal solution to the carpooling game with

individual rationality constraints, provided that all coalitions, as well as all set partitions,

are given as inputs. While the total enumeration of carpools was possible for all of the

real-world Daily Carpooling Problem instances (the number of all non-empty m-restricted

carpools for n = 50 is 251175, and for n = 250, it is 161487125), this was not the case

with set partitions. Even if the size of each coalition is restricted to at most 4, the number

of set partitions grows extremely fast in the problem size, effectively preventing using all

partitions for problems with more than 14 participants. Table 10 shows the number of

pools with at most 4 participants, and the corresponding number of restricted set partitions

(Bell Bn number with an m-restricted pool size) for the Daily Carpooling Problem instances

determined by the formula presented in Appendix B.

Therefore, we limit both the number of coalitions and the number of partitions considered

in the M-PART IR model using the approach described in Appendix B. However, with

appropriate pool and partition selection methods, our heuristic approach results in significant

savings from individually-rational carpooling.
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Table 10: Daily Carpooling Problem instances – pool and partition counts
Instances n Pools |C4| Partitions |P4|
A1 50 251175 4.03083× 1045

A2 75 1285825 6.74707× 1076

A3 100 4087975 3.68888× 10110

A4, A5 120 8502670 8.65512× 10138

A6 134 13241880 2.54159× 10159

A7 150 20822900 2.16735× 10183

A8, A9 170 34404345 9.36314× 10213

A10 195 59645495 1.83639× 10253

A11 199 64704850 4.41378× 10259

A12 225 105861225 4.98479× 10301

B1 - B7 100 4087975 3.68888× 10110

B8 - B12 150 20822900 2.16735× 10183

B12 - B18 200 66018450 1.75336× 10261

B19 - B23 250 161487125 1.00555× 10343

Tables 11–14 show the cost minimization results for the Daily Carpooling Problem in-

stances for TFC and PDC carpooling models. A1 was the only instance for which we could

use all pools to solve the NO-PART IR and 1-PART IR (for all other instances, the number

of candidate pools is limited to 300000). For this reason, the reported LBs of 497.40 and

846.32 for TFC and PDC respectively, are the true (not heuristic) lower bounds on the car-

pooling with individual rationality problem and the corresponding 1-PART IR solution is

the optimal single-partition solution to A1. However, the M-PART IR is a heuristic solution

to A1, because it does not consider all 4.03083× 1045 set partitions.

A1 pools generated by the NO-PART IR (see Figure 2) did not form a full partition of

the set of participants, so we added pools from 1-PART IR and five alternative 1-PART IR

solutions (see Figure 3), which resulted in |Ĉ4| = 138 distinct pools. Algorithm X applied on

the 1-PART IR and five alternative 1-PART IR solutions found |P̂4| = 312 and 78 candidate

partitions for TFC and PDC respectively, which were used as input to M-PART IR.

The TFC M-PART IR model applied to A1 yielded a solution with four partitions (p =

4), and the objective value only 1.52% above the true lower bound. Such a carpooling

arrangement results in 57.98% savings over the baseline, i.e., no carpooling.
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Figure 2: NO-PART IR Pools for A1 (TFC)

Figure 3: 1-PART IR and five alternative solutions for A1 (TFC)
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Table 11: Individually rational (Step 1) solutions to Daily Carpooling Problem instances –
TFC

Inst. n |Ĉ4| |P̂4| Base

NO-
PART

IR
(LB‡)

1-
PART

IR
(UB‡)

M-
PART

IR
p

Sav.
[%]

Gap
[%]

M
vs.

1
[pp]

A1 50 138 312 1201.18 497.40 509.07 504.95 5 57.96 1.52 0.34
A2 75 194 556 1815.43 694.86 708.81 704.64 9 61.19 1.41 0.23
A3 100 266 2950 2494.71 904.52 920.30 914.72 8 63.33 1.13 0.22
A4* 120 306 3905664 6119.65 1726.35 1761.22 1760.12 8 71.24 1.96 0.02
A6 134 275 717408 4814.16 1660.56 1689.88† 1689.36 4 64.91 1.73 0.01
A7 150 389 229370 3680.25 1218.29 1235.47 1231.28 12 66.54 1.07 0.11
A8 170 352 91200 7783.70 2289.54 2312.95 2309.94 11 70.32 0.89 0.04
A9 170 384 2777088 6239.95 1887.70 1905.79 1903.15 14 69.50 0.82 0.04
A10 195 348 195456 8882.55 2612.52 2630.37 2627.37 14 70.42 0.57 0.03
A11 199 522 1743192 4804.21 1529.02 1543.60 1540.33 15 67.94 0.74 0.07
A12 225 523 81858 5507.45 1737.61 1755.20 1750.93 9 68.21 0.77 0.08
B1 100 232 506701 11308.05 3671.78 3901.77 3899.33 8 65.52 6.20 0.02
B2 100 254 338173 11659.45 4081.37 4144.90 4136.72 4 64.52 1.36 0.07
B3 100 231 274340 11795.95 4091.96 4172.01 4164.09 4 64.70 1.76 0.07
B4 100 230 448489 11883.00 3755.56 4004.04 4000.91 9 66.33 6.53 0.03
B5 100 231 149113 11735.95 3809.86 4052.86 4050.01 4 65.49 6.30 0.02
B6 100 238 44891 11756.45 4139.05 4174.10 4169.35 5 64.54 0.73 0.04
B7 100 232 98180 11880.20 4105.83 4148.74 4143.30 6 65.12 0.91 0.05
B8 150 263 440642 18711.60 5760.48 5861.42 5857.64 10 68.70 1.69 0.02
B9 150 265 76052 18630.60 6312.67 6459.80 6456.80 4 65.34 2.28 0.02
B10 150 309 2376385 18804.60 5657.15 5867.80 5864.54 6 68.81 3.67 0.02
B11 150 351 3136848 18604.80 6100.23 6410.00 6405.55 6 65.57 5.01 0.02
B12 150 305 1397922 18621.05 5972.70 6256.07 6248.74 7 66.44 4.62 0.04
B13 200 331 48000 25636.60 8443.45 8970.10 8969.57 6 65.01 6.23 0.00
B14 200 315 2161 25285.10 8898.65 † 9181.30 3 26.71 0.80 0.00
B15 200 308 2881 25591.35 9276.55 9424.07 9422.51 7 63.18 1.57 0.01
B16 200 360 243540 25487.70 8548.12 8627.06 8626.06 5 66.16 0.91 0.00
B17 200 354 77760 25699.60 8628.20 8771.26† 8769.48 6 65.88 1.64 0.01
B18 200 418 5167693 25596.95 8807.34 9090.47 9088.70 9 64.49 3.19 0.01
B19 250 448 145280 34162.55 10721.34 10793.74 10792.45 10 68.41 0.66 0.00
B20 250 445 4769281 34562.15 11006.32 11289.78 11287.86 8 67.34 2.56 0.01
B21 250 375 73731 34235.80 11507.69 † 11606.97 5 66.10 0.86 0.00
B22 250 442 290160 34314.35 12089.22† † 12233.71 9 64.35 1.20 0.00
B23 250 453 251136 34348.95 10894.32 11020.33† 11018.56 5 67.92 1.14 0.01

* A5 is identical to A4
† Optimization stopped after 5 hours
‡ For the selected subset of 300000 pools
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For the TFC model the savings from Step 1 for the Daily Carpooling Problem instances

ranged from 57.96% to 71.24%, with an average of 66.19%. 1-PART IR was stopped after

5 hours for 4 out of 35 instances. In three cases (B14, B21 and B22), no feasible 1-PART

solution was obtained within the time limit. Still, even for these instances, the M-PART IR

yielded the best-known solutions. The average time to solve a single NO-PART IR problem

was 165.46 seconds and the average time to solve the M-PART IR was 42.37 seconds for

TFC carpooling.

For the PDC model, the savings from Step 1 for the Daily Carpooling Problem instances

ranged from 63.65% to 72.31%, with an average of 67.65%. 1-PART IR was stopped after

5 hours for 10 out of 35 instances. In just one case (B11), no feasible 1-PART solution was

obtained within the time limit. Still, the M-PART IR yielded the best-known solutions for

all instances. The average time to solve a single NO-PART IR problem was 170.18 seconds

and the average time to solve the M-PART IR was 45.92 seconds for PDC carpooling.

Tables 11 and 12 show that substantial savings over the baseline can be achieved even with

a partial enumeration of carpools and set partitions. In fact, the average savings (66.18% for

TFC and 67.63% for PDC) were substantially higher than those for the simulated smaller

instances (41.89% for TFC and 54% for PDC). This suggests that the gain in savings due

to increasing the size of the problem is so large that it offsets by a large margin the loss of

using only a partial enumeration due to increased complexity. Tables 13 and 14 show that

the cost of IC is generally larger for real-world instances than for the simulated instances. It

suggests that meeting the IC conditions is increasingly costly in the size of the problem.
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Table 12: Individually rational (Step 1) solutions to Daily Carpooling Problem instances –
PDC

Inst. n |Ĉ4| |P̂4| Base

NO-
PART

IR
(LB‡)

1-
PART

IR
(UB‡)

M-
PART

IR
p

Sav.
[%]

Gap
[%]

M
vs.

1
[pp]

A1 50 129 78 2402.35 846.32 858.35 858.13 2 64.28 1.40 0.01
A2 75 194 232 3630.86 1226.63 1234.30 1234.05 2 66.01 0.60 0.01
A3 100 253 588 4989.42 1618.79 1626.50 1626.50 1 67.40 0.48 0.00
A4* 120 296 3674352 12239.30 3310.19 3388.58† 3388.45 2 72.31 2.36 0.00
A6 134 275 2352960 9628.31 3229.05 3285.72† 3285.70 2 65.87 1.75 0.00
A7 150 387 61478 7360.50 2253.54 2264.62 2264.62 1 69.23 0.49 0.00
A8 170 399 2586144 15567.40 4415.87 4445.38 4444.96 2 71.45 0.66 0.00
A9 170 391 1003464 12479.90 3548.24 3581.24 3581.24 1 71.30 0.93 0.00
A10 195 444 4779112 17765.10 5037.05 5063.50 5063.50 1 71.50 0.53 0.00
A11 199 506 766768 9608.41 2862.38 2875.66 2875.66 1 70.07 0.46 0.00
A12 225 510 74856 11014.90 3246.19 3261.58 3261.58 1 70.39 0.47 0.00
B1 100 228 1314577 22616.10 6994.44 7492.03 7491.28 3 66.88 7.10 0.00
B2 100 258 139313 23318.90 7806.18 7909.51 7908.80 2 66.08 1.31 0.00
B3 100 229 47320 23591.90 7876.52 7957.28 7957.07 2 66.27 1.02 0.00
B4 100 223 228853 23766.00 7178.21 7632.08 7631.93 2 67.89 6.32 0.00
B5 100 230 18106 23471.90 7294.32 7766.73 7766.73 1 66.91 6.48 0.00
B6 100 227 84850 23512.90 7826.81 7877.25 7872.84 3 66.52 0.59 0.02
B7 100 234 80480 23760.40 7840.10 7915.83 7915.61 3 66.69 0.96 0.00
B8 150 301 3619442 37423.20 11204.81 11400.20† 11400.20 1 69.54 1.74 0.00
B9 150 301 62762 37261.20 12298.72 12574.69† 12574.61 4 66.25 2.24 0.00
B10 150 345 3171361 37609.20 10970.89 11411.12† 11411.12 1 69.66 4.01 0.00
B11 150 325 52164 37209.60 11937.25 † 12611.02 5 66.11 5.64 0.00
B12 150 262 353810 37242.10 11605.33 12138.96 12138.96 3 67.41 4.60 0.00
B13 200 412 6128118 51273.20 16574.31 17590.97 17590.97 1 65.69 6.13 0.00
B14 200 362 2773 50570.20 17551.27 18068.65 18068.65 1 26.86 0.80 0.00
B15 200 313 4321 51182.70 18278.36 18606.79† 18606.69 8 63.65 1.80 0.00
B16 200 357 291924 50975.40 16812.34 16972.82 16972.82 2 66.70 0.95 0.00
B17 200 411 83052 51399.20 16936.04 17209.24† 17209.24 2 66.52 1.61 0.00
B18 200 358 97441 51193.90 17251.14 17847.02 17847.02 2 65.14 3.45 0.00
B19 250 513 3286464 68325.10 21112.13 21270.15 21270.11 2 68.87 0.75 0.00
B20 250 444 3234817 69124.30 21679.84 22243.52 22243.52 2 67.82 2.60 0.00
B21 250 442 1849459 68471.60 22642.55 22851.25 22850.49 6 66.63 0.92 0.00
B22 250 448 55808 68628.70 23901.93 24187.76† 24187.77 3 64.76 1.20 0.00
B23 250 506 1266216 68697.90 21400.66 21622.08† 21622.08 3 68.53 1.03 0.00

* A5 is identical to A4
† Optimization stopped after 5 hours
‡ For the selected subset of 300000 pools
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Table 13: The stable pre-nucleolus (Step 3) solution for Daily Carpooling Problem instances
– TFC

Inst. Base
M-

PART
IR

Net Tr. Max Tr. Min Tr. Cost of
IC [pp.]

A1 1201.18 504.952 -126.854 18.718 -23.520 10.56
A2 1815.43 704.642 -166.420 20.000 -27.005 9.17
A3 2494.71 914.725 -172.685 16.852 -25.896 6.92
A4* 6119.65 1760.116 -468.283 37.357 -68.610 7.65
A6 4814.16 1689.360 -640.570 78.910 -81.318 13.31
A7 3680.25 1231.276 -376.300 19.843 -30.055 10.22
A8 7783.70 2309.941 -467.865 54.630 -68.610 6.01
A9 6239.95 1903.153 -736.436 38.134 -57.741 11.80
A10 8882.55 2627.369 -700.817 53.740 -68.610 7.89
A11 4804.21 1540.325 -523.240 25.495 -30.055 10.89
A12 5507.45 1750.926 -304.014 22.668 -30.055 5.52
B1 11308.05 3899.328 -1071.450 440.624 -332.969 9.48
B2 11659.45 4136.720 -767.942 253.466 -453.987 6.59
B3 11795.95 4164.085 -1985.630 231.877 -387.137 16.83
B4 11883.00 4000.910 -1595.440 273.762 -412.138 13.43
B5 11735.95 4050.013 -2368.780 289.675 -1091.560 20.18
B6 11756.45 4169.354 -2325.170 235.194 -358.943 19.78
B7 11880.20 4143.296 -990.893 188.085 -363.119 8.34
B8 18711.60 5857.638 -472.831 322.025 -372.538 2.53
B9 18630.60 6456.802 -194.527 423.524 -423.574 1.04
B10 18804.60 5864.544 -1219.180 319.708 -454.779 6.48
B11 18604.80 6405.551 -3057.100 343.607 -379.674 16.43
B12 18621.05 6248.739 -1160.830 644.881 -412.925 6.23
B13 25636.60 8969.573 -2021.960 286.339 -361.542 7.89
B14 25285.10 9181.302 -846.967 542.987 -364.253 3.35
B15 25591.35 9422.506 -647.061 591.238 -247.979 2.53
B16 25487.70 8626.057 -1019.540 331.976 -279.783 4.00
B17 25699.60 8769.484 -2123.240 426.368 -431.898 8.26
B18 25596.95 9088.697 -245.154 538.666 -390.194 0.96
B19 34162.55 10792.450 -2556.640 237.504 -453.935 7.48
B20 34562.15 11287.855 -1147.840 357.069 -441.714 3.32
B21 34235.80 11606.966 0.000 597.509 -349.453 0.00
B22 34314.35 12233.712 -3884.330 377.397 -262.532 11.32
B23 34348.95 11018.562 -2413.990 322.803 -435.313 7.03

* A5 is identical to A4.
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Table 14: The stable pre-nucleolus (Step 3) solution for Daily Carpooling Problem instances
– PDC

Inst. Base M-PART
IR Net Tr. Max Tr. Min Tr. Cost of

IC [pp.]
A1 2402.35 858.133 -166.791 36.251 -51.613 6.94
A2 3630.86 1234.050 -331.323 46.615 -57.505 9.13
A3 4989.42 1626.501 -488.696 42.332 -57.528 9.79
A4* 12239.30 3388.451 -1300.510 97.755 -139.272 10.63
A6 9628.31 3285.700 -1854.080 129.799 -163.739 19.26
A7 7360.50 2264.623 -977.355 38.287 -61.573 13.28
A8 15567.40 4444.963 -1343.970 159.620 -139.272 8.63
A9 12479.90 3581.241 -1837.900 112.641 -117.386 14.73
A10 17765.10 5063.503 -1928.860 105.906 -139.272 10.86
A11 9608.41 2875.663 -1348.700 53.022 -61.573 14.04
A12 11014.90 3261.585 -1313.600 57.737 -62.632 11.93
B1 22616.10 7491.278 -1690.160 1100.870 -750.255 7.47
B2 23318.90 7908.800 -779.697 563.489 -752.117 3.34
B3 23591.90 7957.069 -5506.130 653.903 -779.623 23.34
B4 23766.00 7631.925 -961.622 712.306 -829.978 4.05
B5 23471.90 7766.735 -2408.420 635.959 -557.650 10.26
B6 23512.90 7872.838 -4897.120 931.838 -729.716 20.83
B7 23760.40 7915.608 -3494.580 546.619 -741.637 14.71
B8 37423.20 11400.198 -1993.060 623.982 -772.990 5.33
B9 37261.20 12574.612 0.000 889.709 -853.402 0.00
B10 37609.20 11411.116 -2905.220 639.415 -917.367 7.72
B11 37209.60 12611.023 -5981.470 730.069 -761.778 16.08
B12 37242.10 12138.956 -1079.370 1146.910 -829.115 2.90
B13 51273.20 17590.967 -6859.130 764.019 -727.496 13.38
B14 50570.20 18068.651 -1379.510 793.204 -641.568 2.73
B15 51182.70 18606.690 -712.068 1072.210 -506.217 1.39
B16 50975.40 16972.815 -5092.020 727.964 -585.752 9.99
B17 51399.20 17209.241 -3573.050 929.048 -770.687 6.95
B18 51193.90 17847.018 -1981.140 895.842 -781.998 3.87
B19 68325.10 21270.105 -11380.600 698.584 -910.725 16.66
B20 69124.30 22243.518 -2181.590 1138.450 -731.666 3.16
B21 68471.60 22850.490 -1697.570 1301.080 -627.991 2.48
B22 68628.70 24187.765 -7873.490 755.695 -534.704 11.47
B23 68697.90 21622.082 -6618.680 650.890 -870.830 9.63

* A5 is identical to A4.
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