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Abstract

Most decisions involve multiple payoffs over time and under risk, as for instance the se-
quential play of a lottery. For an individual who cares not only about profit at the end, but
also on how early these profits accrue, we apply a modified version of the axioms of subjective
expected utility to obtain the Discounted Incremental Utility model. To this classical bedrock,
we add the notion that preferences are affected by range effects. This modification results in the
so-called Range-Discounted Incremental Utility, which can successfully predict a plethora of
phenomena such as attitudes towards sequential play, the four-fold pattern, preference for tem-
poral hedging, preference reversals for risk and time, and patterns of decreasing impatience. For
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1 Introduction

The most economically significant problems are related to uncertainty and time delay. The most
popularmodel used to evaluate uncertain income streams is the discounted expected utility (DEU, in
short, see Fishburn, 1970, Theorem 11.4), which combines the idea of exponential time discounting
(Koopmans, 1960) with the expected utility of risky lotteries (Von Neumann and Morgenstern,
1945; Savage, 1954). Let (X0, X1, ..., XT ) denote a risky payoff stream whereXt denotes a random
payoff received at time t and pt its distribution. DEU preferences are represented by the following
functional:

(X0, X1, ..., XT )↦
T
∑

t=0
�tEptu(Xt),

where � ∈ (0, 1) is a discount factor, u is the utility function, and Ept denotes expectation with
respect to the distribution of Xt.

This model implies an extreme form of myopia. If the decision maker dislikes an equal chance
of winning $300 dollars or losing $200 (let’s call it the p bet), then under DEU he should dislike
it even more if this bet is sequentially repeated over several periods irrespective of the correlation
between consecutive draws.

the following risky payoff stream even more:
$300 today,−$200 tomorrow with probability 0.5
−$200 today, $300 tomorrow with probability 0.5.

We can think of this stream as accepting p for just one day. After a day, the bet is canceled and
winnings returned and you additionally get $100 for sure. The stream is clearly better than p.

Sequential vs. simultaneous play Consider an equal chance prospect of winning $300 or losing
$200. In a famous example, Samuelson (1963) reports his colleague who rejects a single play of
this prospect, but is willing to accept several repetitions. If the repetitions and the payout occur
simultaneously, these preferences can be accommodated by DEU. But what if these repetitions are
spread over time with money being paid out after each repetition. DEU predicts that if a single play
is rejected, then the sequential ones are always rejected. In fact they are even worse than a single
play. This is so because DEU evaluates each period independently of another so if a lottery played
in one period is unattractive, its repetition in another period must also be so. Benartzi and Thaler
(1995) echo this line of thought, which they coin myopic loss aversion.

We tested this prediction on a group of 140 MBA students from the University of Virginia and
found that even though 64% of subjects rejected a single play, only 40% rejected 10 sequential
repetitions spread over 10 weeks starting from now. Thus, a majority of subjects do not exhibit
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myopic loss aversion, and at least 24% of subjects rejected a single play and accepted a sequential
play, thus violating the DEU prediction.

Correlation neutrality The sequential play above assumed iid draws. How about serially cor-
related repetitions? DEU predicts correlation neutrality (Fishburn, 1970, Theorem 11.1), i.e. if
marginal payoff distributions in each period are the same in two streams, then these streams are
preferentially equivalent. Lanier et al. (in press) as well as Rohde and Yu (2022) reject this predic-
tion and find that people have preference for negative correlation, or – stated differently – they like
to hedge against inter-temporal risk. For example, people exhibit strong preference for an equal
chance of getting

($300 today,−$200 in a week) or (−$200 today, $300 in a week)
as compared to an equal chance of:

($300 today, $300 in a week) or (−$200 today,−$200 in a week).

Discounted Incremental Utility While descriptively problematic, correlation neutrality in DEU
is analytically convenient. It allows treating each period separately by taking expectation with
respect to the marginal at time t instead of the joint distribution over payoff streams. Our aim is
to propose a model that shares this analytical convenience with DEU while predicting things like
preferences for sequential play or correlation aversion. One such model, commonly adopted in
the finance literature (Vila and Zariphopoulou, 1997), is to take the expected utility of the sum of
payoffs at some horizon. It clearly captures the phenomena discussed above. However, since it cares
only about the aggregate at the horizon, it ignores the time dimension and is completely insensitive
to period risk. The model we propose combines the nice features of the EU-sum approach with the
analytical convenience of DEU.

Instead of the distribution of incremental payoffs we propose to focus on the balance of payoffs
at a given time period, i.e. the distribution of the accrued payoffs from the beginning of the stream
till current period. We do not ignore the time dimension because we consider the distribution of
the accrued payoffs period by period. In this way we may still look at the distribution in a given
time period instead of the distribution of the whole payoff stream. Let

The Discounted Incremental Utility model evaluates

b↦
∑

t∈
�(t)Ebt

[

u

(

t
∑

i=0
xi

)

− u

(

t−1
∑

i=0
xi

)]

.

One way, called the payoff vector approach (Kreps and Porteus, 1978, p.185), is to define a
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choice object as a probability distribution over all payoff paths in a risky payoff stream X.1 Such
domain is appropriate to model pure time preference (when the money is paid). The payoff vector
approach, however, fails to capture the fear of termination (whether the money is paid).

because it implies two kinds of separability: additive separability in time andmultiplicative sep-
arability with respect to time discounting. These properties lead to the predictions discussed above
that are too restrictive to match the data we have. The model we propose, Discounted Incremental
Utility, is a telescopic version of EU-sum, whereby period payoffs do matter individually, as well as
in the aggregate. It exhibits a more nuanced form of myopic loss aversion, as well as a preference
for negative serial correlation. Our key idea is to have separability on the level of cumulative rather
than incremental payoffs. We now explain how and why this idea works.

The common feature in models with time delay is that of impatience. There are two main
approaches to impatience. The first one, known at least since Samuelson (1937), hereinafter referred
to as pure time preference, focuses on when a good is received. The impatient decision-maker
prefers to receive the goods sooner rather than later. Under this approach it is standard to have
preferences defined on the set of stochastic processes with values interpreted as incremental payoffs
received at any time period. DEU is a leading model falling under this approach.

The second approach introduced by Halevy (2008) and followed by Baucells and Heukamp
(2012) and Blavatskyy (2016), hereinafter called fear of termination, focuses on whether a good is
received. According to this view people are impatient because although the present is certain, the
future is inherently uncertain, and the further away in time, the less certain is the chance of getting
the payout (hazard of mortality, a promise of a future reward may be breached, etc.). This approach
focuses on cumulative payoffs received up to a termination time. The key role of cumulative instead
of incremental payoffs makes this approach a good candidate to relax the DEU separability proper-
ties. Yet, the existing papers falling under the fear of termination approach assume a domain that is
too narrow to address sequential repetitions of a risky prospect with or without serial correlation.
Specifically, Halevy (2008) and Blavatskyy (2016) focus on positive payoffs under certainty (except
for an objective risk of termination) while Baucells and Heukamp (2012) considers the restricted
domain of delayed binary lotteries with one nonzero outcome.

We thus extend the fear of termination approach to both positive and negative payoffs, and
arbitrary risks. Our domain of risky payoff streams is very broad and has one-time lotteries, pay-
off streams under certainty, and lotteries repeated over time—possibly with serial correlation—as
special cases. In order to apply the fear of termination approach, we associate each risky payoff
stream with a new object called a temporal profit profile, described by the probability distribu-
tion of accrued profits up to each time period. Each of these distributions is characterized by ob-

1Or a corresponding distributions under the recursive formulation of Kreps and Porteus (1978) and Epstein and Zin
(1989), suitable for dynamic settings.
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jectively given probabilities. To this objective probabilities, the individual overlaps a subjective
probability—expressing the temporal fear of termination—that drives impatience. Thus, the rea-
son he may prefer sooner positive payoffs is a higher guarantee of survival at such early time. In
contrast, Halevy (2008) takes such fear as an objectively given mortality risk.

Taking profits (accumulated payoffs) instead of individual payoffs as the consequence is em-
inently realistic for finance and business decision, where accounting systems are geared towards
aggregating payoffs and presenting profits. Borrowing from business language, cumulative payoffs
up to any given time t will be called profits at time t; and they will be in the black if positive, and
in the red if negative.

Our domain of probability distributions over the accrued profits offers a convenient setup for
building preference foundations for the joint risk and time domain. In particular, observe that tem-
poral profit profiles technically coincide with Anscombe-Aummann acts (Anscombe and Aumann,
1963). Thus, our first contribution is to adapt the Anscombe-Aummann axioms (Gilboa, 2009,
p.143) of subjective expected utility to the temporal setting and obtain preference foundations for
theDiscounted Incremental Utilitymodel,or DIU for short.2 DIU involves a utility function for out-
comes and a discount function for time. The individual discounts the expected incremental utility
of each period, i.e., the utility of the profit up to today minus the utility of the previous profit. The
model particularizes into simpler forms, including a novel discounted Kelly criterion, or EU-sum
for individuals without any fear of termination.

On the descriptive side, DIU accommodates preference for sequential play and for negative
correlation. For one-time lotteries, DIU, DEU, and EU-sum all coincide; and for a single lottery
played today, DIU reduces to EU.

We focus on monetary consequences, relevant for many financial and business decisions, as
well as for interpreting the results of laboratory experiments that commonly use monetary payoff.
The formulation, however, could be extended to consumption.3

2DIU was hinted by Bell (1974, Eq. 4) based not on axiomatic properties, but on the requirement that if two payoffs
are received in nearby times, then their utility should be similar to that of receiving their sum at once. Blavatskyy
(2016) also argues for discounted incremental utility, but his setup is restricted to positive cash flows under certainty.

3 A simple approach is to assume a quasi-linear utility model for consumption under certainty, so that the period’s
payoff is money plus the utils from consumption received under conditions of certainty (see Halevy (2008)). Such
consumption utility should account for the desire to smooth out consumption. DIU then introduces a utility for risk and
a discount function to account for risk and time preferences in an integrated way, as time is seen as inherently uncertain.
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2 Discounted Incremental Utility for Risky Payoff Streams

2.1 Preliminaries

Let (Ω, ,ℙ) be a probability space. A risky payoff X is a simple random variable, that is real-
valued function on Ω that has finite range and is measurable  .4. The law of X, is a function
p(X) ∶ ℝ → [0, 1] such that p(X)(z) = ℙ◦X−1(z) for all z ∈ ℝ. Clearly, ∑x∈A pX(x) = 1 for a
finite set A because X is simple. Let Δ denote the set of such probability distributions.

Our focus is not on the temporal resolution of uncertainty (see Kreps and Porteus, 1978), hence
we assume the resolution time agrees with the reception time. We let  = {0, 1, ..., T } be the index
set of times at which payoffs are received. These do not need to be equally spaced in the time line.
From now on, the time frame remains fixed.

A risky payoff streamX is a collection of risky payoffs, X = (Xt ∶ Ω→ ℝ)t∈ , adapted to some
filtration5 (t, t ∈ ) of  , i.e. Xt is measurable t for each t ∈ . Let  be the set of all risky
payoff streams, and E denote the expectation wrt ℙ.

The values of a risky payoff stream designate incremental payoffs received in each time period.
Associated with a risky payoff stream X = (X0, X1, ..., XT ) is its balance b(X) defined as

b(X) =
(

p(X0), p(X0 +X1), ..., p

(

T
∑

i=0
Xi

))

.

The set of all balances is Δ . The balance traces the past, instead of focusing solely on the present,
ignoring dependence on the state: for each period it determines the distribution of profit earned up
to that period. Given two risky payoff streams X,Y and a scalar � in [0, 1] we define (X,Y; �) as
some risky payoff stream such that b(X,Y; �) = �b(X) + (1 − �)b(Y).

Figure 1 shows an exemplary risky payoff stream depicted as a tree. The black numbers are
incremental payoffs received at a given time period. The blue numbers indicate the accrued profits
over time. Table 1 shows the associated balance.

2.2 A key modeling assumption

Let≽ be a preference over risky payoff streams. Our background assumption states that the decision
maker is indifferent between two risky payoff streams if their balances are equal. Formally,
A0 b(X) = b(Y) implies X ∼ Y.
4I.e. [! ∈ Ω ∶ X(!) = x] ∈  for each real x.
5A filtration of  is a sequence (t, t ∈ ) of �-fields satisfying 0 ⊆ 1 ⊆ ⋯ ⊆ T ⊆  .
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Figure 1: A risky payoff stream. Accrued profits are shown in blue.
t = 0 t = 1 t = 2

−100

0.5

−100 0.5

+40

+120

−60

20

0.5 +200
2200.5
+100
120

0.5 +70
100.5
+30
−30

Table 1: Balance Associated with the Risky Payoff Stream in Figure 1
x a0 a1 a2

−100 100%
−60 50%
−30 25%
10 25%
20 50%
120 25%
220 25%

A decision maker whose preferences over risky payoff streams satisfy A0 only cares about the
current balance associated with the stream. What matters is not the profit or loss in a given period,
but being in the red or in the black, counting from the beginning of the stream. Moreover, it is
only probability distribution of the accrued payoffs that matters rather than specific states or paths
leading to these payoffs.

2.3 Fear of termination and the balance

Someone who satisfies assumption A0 is interested in the balance of a given risky payoff stream
in each period t, that is, the probability distribution of cumulative payoffs accrued from time 0 to
t. Such a person differs from a person who is interested in the distribution of payoffs received only
at time t by the reference point against which profits and losses are defined. In the first case, the
reference point for the decision-maker’s wealth at any time t is constant and equal to the wealth at
time 0, while in the second case it is always adapted to the level of wealth from the previous period
t − 1.

Suppose the decision maker facing a risky payoff stream X = (X0, X1, ..., XT ) cares only how
much money he will get in total and not when this money is received. Then what matters to him is
the sum of risky payoffs∑T

i=0Xi. However, payoffs that occur later in time are less certain that those
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that occur earlier. To account for that we may consider the possibility that the stream terminates
(for whatever reason) before its natural horizon at t < T . In this case, he will be paid only up to
this time. ∑t

i=0Xi

We follow the common approach of assuming independence of the states in Ω (i.e., only prob-
ability distribution matters, not the particular states that generate those distributions).

Consider the following extension: given a risky payoff stream X = (X0, ..., XT ), let

((X0, ..., Xt, 0, ..., 0), t ∈ )

be a collection of truncated streams, each reflecting the possibility that payoffs may be terminated
at any time t ∈ . If the decision maker believes termination will surely occur at time T , only the
non-truncated stream (X0, ..., XT )matters. If, on the other hand, the decision maker exhibits fear of
termination, then what matters conditional on termination occurring at time t is not when payoffs
occur, but the profit accrued up to time t, i.e. ∑t

i=0Xi. Accordingly, our object of choice is a(X),
which for each termination state t gives a probability distribution of accrued profits at t.

The example in Figure 1 is useful to illustrate what A0 entails: The decision maker would not
mind if in t = 2 he instead receives an equal chance between −10 and −50 following the payoff
of 120; and an equal chance between 180 and 280 following the 40, because the three probability
distributions in Table 1 remain the same.

Axiom A0 implies two things. First, pure time preference and fear of termination are exchange-
able explanations of the same preferences; a given level of impatience may be attributed either to
time discounting or to holding subjective fear of termination. While these two motives could co-
exist, we can only identify them jointly. Second, independence of Ω is imposed on the level of
accrued profits. This allows to adapt the Anscombe-Aumann two-stage uncertainty to our setup.

With A0 in mind we will describe the rest of axioms in terms of temporal profit profiles. Then
state the main representation for ≽, followed by the associated representation for ≽′. Depending on
the context, we refer to t ∈  as a time period or a termination state interchangeably.

Specifically, we may construct a preference relation ≽∗ over Δ by writing a ≽∗ b if and only
if there exist X and Y in  such that b(X) = a and b(Y) = b, and X ≽ Y. ≽∗ is well-defined and
inherits many properties from ≽. First, ≽∗ does not depend on the particular choice of risky payoff
streams used to construct it. Suppose that b(X) = b(X′) = a. Then, by A0, X ∼ X′ and, since
≽ is transitive, X ≽ Y ⟺ X′ ≽ Y. So ≽∗ will never run into contradictions. Second, for any
a ∈ Δ there is X ∈  such that b(X) = a. Thus, since ≽ is complete, so is ≽∗. The same is true
for transitivity.
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2.4 Preferences and Representation

To simplify notation we embed ℝ and Δ in , i.e. a consequence x ∈ ℝ is identified with the
profile in which x is paid in each period, and a risky prospect p is identified with the profile in
which p is played in each period. Thus, the outcome ‘0’ refers getting 0 in all periods. We also
write (p, t) to denote the profile associated with playing a lottery p ∈ Δ at time t, and getting 0 in
all other time periods. The mixture of profiles, �a + (1 − �)b ∈ , � ∈ [0, 1], is defined in the
standard point-wise way.
A1 Weak order: ≽ is complete and transitive.
A2 Independence: ∀a, b, c ∈ , if a ≻ b and � ∈ (0, 1], then �a + (1 − �)c ≻ �b + (1 − �)c.
A3 Archimedean: ∀a, b, c ∈ , if a ≻ b and b ≻ c, there ∃�, � ∈ (0, 1) such that

�a + (1 − �)c ≻ b and b ≻ �a + (1 − �)c.
To introduce next axioms, we define a new binary relation on Δ(C) which is also denoted by ≽.
For p, q ∈ Δ(C) we write p ≽ q if and only if a ≽ b for a, b ∈  such that a(t, ⋅) = p and b(t, ⋅) = q
for all t ∈  . Clearly, if ≽ on satisfies Ai, so does ≽ on Δ(C) for i = 1, 2, 3.
A4 Outcome monotonicity: ∀x, y ∈ ℝ, if x > y, then �x ≻ �y.
A5 Temporal monotonicity: ∀p, q ∈ Δ(C) and ∀t ∈  , if (p, t) ≻ (q, t) then p ≻ q.
A6 Impatience: For all x ∈ C and t, t′ ∈  , t < t′, if x > 0 then (�x, t′) ≽ (�x, t).
This seven axioms combine the normative vNM axioms typically invoked in the context of risk

with the standard temporal axioms of impatience and risk and time independence. The novelty
lies in applying these standard axioms to cumulative payoffs, instead of incremental ones. Now we
present our main representation result. All proofs are contained in the Appendix, and a sketch of
the proof is provided in §4.
Theorem 1. A preference≽⊆ 2 satisfies A1-A6 if and only if there is a strictly increasing function
u ∶ C → ℝ and a non-increasing function s ∶  → (0, 1], with s(0) = 1, such that

a ≽ b ⟺

T
∑

t=0
[s(t) − s(t + 1)]

∑

x∈C
a(t, x)u(x) ≥

T
∑

t=0
[s(t) − s(t + 1)]

∑

x∈C
b(t, x)u(x).

Moreover, a strictly increasing function v ∶ C → ℝ and a non-increasing function s′ ∶  → (0, 1],
with s′(0) = 1 satisfies a ≽ b ⟺

∑T
t=0[s

′(t) − s′(t + 1)]
∑

x∈C a(t, x)v(x) ≥
∑T

t=0[s
′(t) − s′(t +

1)]
∑

x∈C b(t, x)v(x) if and only if s′ = s and there are numbers � > 0 and � such that

v(x) = �u(x) + �.
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Next, we translate the result to preferences over risky payoff streams to obtain the discounted
incremental utility (DIU) model. For convenience, set u(∑−1

0 ) = 0.
Corollary 1. By A0, if (??) represents ≽⊆ 2, then ≽⊆ 2 is represented by

VDIU(X) =
T
∑

t=0
s(t) E

[

u

(

t
∑

i=0
Xi

)

− u

(

t−1
∑

i=0
Xi

)]

(1)

= Eu(X0) +
T
∑

t=1
s(t) E

[

u

(

t
∑

i=0
Xi

)

− u

(

t−1
∑

i=0
Xi

)]

.

2.5 Time as Inherently Uncertain

We can heuristically derive (1) by combining EU with the interpretation of time as inherently un-
certain. Suppose the individual lives under the fear that payoffs may be terminated at any time
t ∈ , ending up with just the profit accrued at t, ∑t

i=0Xi. For t ∈ , let s(t) be the subjective
probability of terminating at t or later, and conveniently set s(T + 1) = 0. Thus, the probability of
terminating precisely at t is s(t)− s(t+1). Figure 2 views the risky payoff stream of Figure 1 under
this two-stage lens. The first stage indicates the subjective probability of terminating at any t ∈ 
and the second stage has the objective probabilities of profits conditional on termination. Thus,
keeping in mind that s(T + 1) = 0, the subjective expected utility of the risky payoff stream is

VDIU(X) =
T
∑

t=0
[s(t) − s(t + 1)]Eu

(

t
∑

i=0
Xi

)

,

= s(T )Eu

(

T
∑

i=0
Xi

)

+
T−1
∑

t=0
[s(t) − s(t + 1)]Eu

(

t
∑

i=0
Xi

) (2)

which is similar in form to (??), and an equivalent way to write (1).

2.6 Income Rates

Let C(t) be cumulative income at time t, and C ′(t) the income rate; and assume u is differentiable.
In line with the satiation model with full retention (Baucells and Zhao, 2020), DIU becomes

VDIU−rates(X) = Eu(C(0)) + E∫

T

0
s(t) u′(C(t))C ′(t)dt

= s(T )Eu(C(T )) + E∫

T

0
[−s′(t)]u (C(t)) dt.

10



Figure 2: Perception of a risky payoff stream when time is inherently uncertain.

1 − s(1)
1

−100

s(1) − s(2)

0.5 20
0.5

−60

s(2) 0.25 220
0.25 120
0.25

100.25
−30

The first expression is the analog of (1) for income rates. The second expression results from
integration by parts, and it is the analog of (2). When C(t) is a step function reflecting discrete
lump payments, a continuity argument shows that VDIU−rates converges to the discrete version of
VDIU (see Baucells and Zhao (2020, p. 5704)).

3 Special Versions

Special versions of DIU contain the standard models as well as some novel forms. Clearly, if u
is linear, then VDIU =

∑T
t=0 s(t)EXt, and we get the discounted expected payoffs. We now explore

other less trivial special cases of DIU.

3.1 Expected Utility of the Sum

If s(T ) → 1, then the patient individual does not think the stream will terminate prematurely, and
DIU becomes the Expected Utility of the sum, VEU-SUM(X) = Eu

(

∑T
i=0Xi

)

. To illustrate the
difference between DIU and EU-sum, let X ∶ Ω → ℝ+ be a positive risky payoff at time t > 0.
Suppose that, to obtain X, one must put a deposit of � > 0 today, and get back the deposit at time
t. Consistently with DIU, we expect individuals to be apprehensive of such deposit:
Pattern 1 (the fear of being in the red). (−�, 0) + (� +X, t) ≺ (X, t).

DIU in Eq. (1) evaluates this opportunity as s(t)Eu (X) + (1 − s(t))u(−�), i.e., the discounted
expected utility of the final profit, plus a negative term expressing the fear of early termination,
leading to a loss of the deposit. Increasing the deposit amount leaves the total profit unaltered
(EU-sum is indifferent to �), but makes the fear term more negative (DIU dislikes �).
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3.2 Discounted Kelly’s criterion

Let u(x) = ln(C−1+x), where C−1 > 0 is some initial capital the individual is willing to put at risk,
andCt = C−1+∑t

i=0Xi is the capital at time t. Then, the incremental utility u(∑t
i=0Xi)−u(

∑t−1
i=0Xi)

happens to be log-return on capital, ln(Ct∕Ct−1), whose maximization produces the Kelly’s crite-
rion. Thus, DIU simply discounts the log-returns on capital, VDIU(X) =

∑T
t=0 s(t) E ln(Ct∕Ct−1).

Discounted Kelly is different from the original Kelly criterion, VKELLY(X) = s(T ) ln
(

CT∕C0
).

To see this, apply (2) to see that

VDIU(X) = s(T ) ln
(

CT∕C0
)

+
T−1
∑

t=0
[s(t) − s(t + 1)]E ln

(

Ct∕C0
)

3.3 Red-averse utility

Let u(x) possess a concave kink at some initial reference wealth level, e.g., the status quo, separating
gains and losses. Subsequently, the incremental utility of a positive cash flow is always positive,
but it is encoded as a much welcomed reduction of the loss if it offsets past losses. Similarly, the
incremental utility of a negative payoff is always negative, but it is encoded as a mere gain reduction
if the accumulated profit stays in the black, and as a painful loss if it turns (or keeps) past profits
into the red.

The red-averse utility model explains very well the disposition effect in financial markets, de-
pending on whether negative returns are encoded as a lesser gain or a larger loss, relative to some
anchor (e.g., the purchase price). The individuals risk appetite increases when the current profit is
negative (as the risk profile of the remaining payoffs uses a flatter portion of the value function).
As soon as the profits recover, the risk profile of the remaining profits is centered at the reference
point, and the kink induces a desire to avoid risk and sell. Here, we assume payoffs are not yet re-
alized, which then encourages the reference point to stay at the purchase price (Imas, 2016). More
generally, a prior payoff can alter whether a future payoffs yields cumulative gains of losses, hence
influence future risk preferences and temporal trade-offs.

3.4 Relationship with Discounted Expected Utility

How does DIU compare with the traditional discounted expected utility (DEU) applied to money,
VDEU(X) =

∑T
t=0 s(t)Eu

(

Xt
), often used as a benchmark to interpret experiments on time prefer-

ences (Rubinstein, 2003; Andreoni and Sprenger, 2012)? DIU does not contain DEU, except for the
trivial cases of one-time lotteries, or linear utility. DEU, however, can be obtained from a modified
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Table 2: Evaluation of one or two plays of X = (350,−200; 0.5, 0.5) using Eq. (1) with u(x) =
x ⋅ 1x≥0 + 2.25x ⋅ 1x<0 and s(1) = 0.9.

u(X, 0) = 1
2
350 − 1

2
200 ⋅ 2.25 = −50

u(X +X, 0) = 1
4
700 + 1

2
150 − 1

4
400 ⋅ 2.25 = 25

u(X +X, 1) = s(1)u(X +X, 0) = 22.5
u((X, 0) + (X, 1)) = (1 − s(1))u(X, 0) + s(1)u(X +X, 0) = 17.5

version of DIU where the reference point is dynamically reset at the status quo in every period.6
Using experimental data, Cheung (2019) calibrated both DEU and DIU, and concluded [p.514]

that DIU has a superior log-likelihood with the same number of parameters. DIU also outperforms
the linear model in terms of AIC and BIC.We now explain howDIU outperformsDEU in predicting
attitudes towards sequential play and preference for temporal hedging.

3.5 Back to Samuelson’s Paradox

How individuals react to the repeated play of a lottery has been crucial in the understanding of
expected utility (Samuelson, 1963). Under the lens ofDIU,we bring the time dimension and explore
how individuals react to different timings of repeated play. We will show that DIU is more nuanced
than DEU, in that it exhibits somemyopic loss aversion, but not to the point of rejecting the repeated
play of a favorable lottery.

Table 2 applies the red-averse version of DIU using one or two repetitions of the mixed lottery
X = (350,−200; 0.5, 0.5), assuming a piece-wise linear utility with loss aversion 2.25. We observe
that the single play is rejected (row 1), whereas the simultaneous repetition of two plays today is
accepted (row 2). Delaying this simultaneous repetition (row 3) makes it a bit less attractive due
to discounting, but the total utility cannot switch signs. The sequential play of one lottery today
and another tomorrow (row 4) would also be acceptable. The delayed simultaneous play (row 3),
however, is preferable to sequential play (row 4). This is because if the first play comes up as
a loss, then sequential play leaves the decision maker in the red for one period, whereas delayed
simultaneous offsets the losses immediately. A simple condition summarizes the predicted patterns.

6Let ut(x) = u(x−rt), where u is a value function and rt = ∑t−1
i=0Xi is such a dynamic reference point. In a financial

investing context, this reference point updating would be realistic if the decision maker sells its position and realizes the
profits in each period (Imas, 2016). Then, the incremental utility becomes the utility of the current payoff, as follows:

ut

( t
∑

i=0
Xi

)

− ut

( t−1
∑

i=0
Xi

)

= u(rt +Xt − rt) − u(rt − rt) = u(Xt).

In short, discounted incremental utility plus full reference point adaptation equals DEU. Yet, because ut now depends
on time via rt, this adaptive model violates risk and time independence (A5), hence falls outside our axiomatization.
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Pattern 2 (attitudes towards sequential play). LetX ∶ Ω→ ℝ and t > 0 be such that (X+X, 0) ≻
0 ≻ (X, 0). Then, a) (X, 0) + (X, t) ≻ 0 is possible, and b) (X +X, t) ≻ (X, 0) + (X, t).

While Pattern 2b is compatible with DEU, Pattern 2a is not, as DEU predicts that the more
sequential repetitions, the worse: (X, 0) ≺ 0 implies∑(X, ti) ≺ 0.

Are observed preferences compatible with Pattern 2? In preparation for a class discussion at the
Darden School of Business, 140MBA students enrolled in an elective during the Fall of 2019 and
2020 had to complete a survey. While payoffs are hypothetical, students are well aware that their
responses play a key role in their learning experience. They were presented with the opportunity
of playing 10 repetitions ofX = ($300,−$200; 0.5, 0.5) with three different timings: simultaneous
play today, simultaneous play in 10 weeks, and sequential play spread over 10 weeks.
Table 3: Play of ten repetitions of X = ($300,−$200; 0.5, 0.5) with various timings. The notation
is analogous to that in Table 2.

QUESTION ANSWER [N each side] p-value†
(i) (X, 0) vs. 0 36% vs. 64% [48, 84] 0.0012
(ii)

(

∑10
i=1X, 0

)

vs. 0 84% vs. 16% [117, 23] 0.0000

(iii)
(

∑10
i=1X, 10

)

vs. 0 76% vs. 24% [106, 34] 0.0000

(iv) ∑10
i=1(X, i) vs. 0 60% vs. 40% [84, 56] 0.0140

(v)
(

∑10
i=1X, 10

)

vs. ∑10
i=1(X, i) 61% vs. 39% [86, 54] 0.0051

†Binomial two-tail test, null hypothesis 50%.

Table 3 shows the results. First, we confirm Samuelson’s paradox, namely, the majority (i)
rejects a single play,7 but (ii) accepts 10 repetitions. Most also (iii) accept 10 simultaneous repeti-
tions played 10 weeks from now, but with slightly less enthusiasm. The prospect of 10 sequential
repetitions over 10 weeks is attractive, but much less so (iv). When asked directly, (v) the majority
prefers delayed simultaneous play to sequential play. Thus, these MBA’s are fully consistent with
Pattern 2.

Note that while theDIU prediction is fully consistent with the presented evidence, it is alsomuch
more natural than the DEU prediction. According to DEU, the decision maker who rejects a single
play, equally dislikes each of its sequential repetitions, making the whole thing worse the more
repetitions there are. On the other hand, consistently with the Samuelson example, DEU predicts
that in the case of simultaneous play, more repetitionsmake the prospectmore attractive. Obviously,
preferences cannot be so divergent, especially because the boundary between the sequential and the
simultaneous play is not very sharp, and depends on how we define time periods. DIU, on the other

7In an earlier survey, these same students were asked for the minimum gain G that would make an equal chance of
L = −$500 and G acceptable. Most students [64%] required G > 1.5 ⋅ |L|.
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hand, captures the intuition quite well. Note that for 0 ≤ t1 < t2 < ... < tn by (1eq.) the advantage
of sequential over delayed simultaneous is given by

V

(

n
∑

i=1
(X, ti)

)

− V

(

n
∑

i=1
X, tn

)

=
n−1
∑

i=1
[s(ti) − s(ti+1)]V

(

i
∑

t=1
X, 0

)

, (3)

where V (
∑i

t=1X, 0
) is the evaluation of i simultaneous repetitions today. If all time periods are

close to each other, the decision maker is unlikely to believe termination occurs before tn, and hence
the difference in (3) will be close to null. If on the other hand, the decision maker believes termi-
nation is very likely/is very impatient, then sequential play is preferable to delayed simultaneous
if all these terms are positive (any number of repetitions is favorable), and the opposite if negative
(due to loss aversion).

3.6 Serial Correlation and Temporal Hedging

Consider a 50:50 lottery played today, and played again at some future time with the odds tilted so
that the same outcome may repeat with more or less than 50%. Specifically, for x > 0 ≥ y, t > 0,
and 0 ≤ � ≤ 1, let

X� = ((x, y; 0.5, 0.5), 0) +

{

((x, y; �, 1 − �), t) if (x, 0) realizes,
((x, y; 1 − �, �), t) if (y, 0) realizes. (4)

Negative serial correlation, � < 0.5, offers a form of temporal hedging. Indeed, if �′ < �, then the
final profit in X�′ is a mean preserving contraction of that in X�. We expect most individuals to be
risk averse, hence like negative correlation, and dislike positive correlation.
Pattern 3 (preference for temporal hedging). If �′ < �, then X�′ ≻ X�.

Using x = 350 and y = −200 as in Table 2, the uncorrelated case with � = 1∕2 yields a
final profit of (700, 150, 400) with probabilities (1∕4, 1∕2, 1∕4), setting � = 2∕3 (positive serial
correlation) changes the probabilities to (1∕3, 1∕3, 1∕3) (row 4), and setting � = 1∕3 (negative
serial correlation) changes the probabilities to (1∕6, 2∕3, 1∕6). Using the same parameters in Table
2, the utility of these three prospects is 17.5, -20, and 55, respectively. More generally, we verify
that, under DIU, a preference for temporal hedging holds if and only if u is mid-point concave, i.e.,
u(x + y) > [u(2x) + u(2y)]∕2. In contrast, DEU is insensitive to serial correlation.

15



4 Outline of the proofs

Theorem 1: We follow Fishburn (1970, Thm 13.2) subjective expected utility result, after rein-
terpreting its two stages. For us, the ‘horse race’ determines the termination time t ∈ , and the
‘roulette wheel’ pays the profits accrued by then, at, following the distribution ℙ. Indeed, A1-A3
are standard vNM axioms applied to the mixture space. Axiom A5 is nothing else than the state-
independence axiom, which is key in separating subjective beliefs from tastes over outcomes, and
A6 strengthens their non-triviality axiom to ensure that not only the set  but also all its nonempty
subsets are non-null.

5 Conclusions

Our contribution in this paper is two-fold. On the normative side, our starting point was an individ-
ual who cares about profits. When profits accrue over time, such individual should care not only
about final profits, but also on how soon these profits accrue. The standard axioms of expected
utility, together with impatience and risk&time independence, then produce the incremental dis-
counted utility model, whose form was advanced by Bell (1974). The model is normative when
the utility is a function of wealth and discounting is exponential, and can take intriguing new forms
such as the discounted Kelly’s criterion. Discounted incremental utility can be heuristically derived
by treating time as inherently uncertain (Baucells and Heukamp, 2012; Blavatskyy, 2016).

Discounted incremental utility is behaviorally appealing when the utility exhibits a concave
kink at some reference point. There, a negative payoff does not ‘count double’ when it reduces
previous positive profits, whereas a positive payoff can ‘count double’ when it reduces a past loss.
This specification predicts that when confronted with different payoff streams having the same
cumulative total at the end, individuals will prefer those that stay in the red for a shorter time, e.g.,
prefer investments with shorter payback periods (Graham and Harvey, 2001).

To further increase the descriptive appeal of discounted incremental utility, we add range dis-
tortion effects. Range principles, with a long tradition in psychology, and recently modeled for
risk by Kontek and Lewandowski (2017) and Baucells, Lewandowski and Kontek (2020), offer an
avenue more promising than rank principles when it comes to adding the time dimension. Here,
our contribution tackles a fundamental challenge: The two leading behavioral models for risk and
time possess narrow and non-overlapping domains. Indeed, Prospect theory applies to one-time
lotteries (Tversky and Kahneman, 1992); whereas hyperbolic discounting applies to payoff streams
under certainty (Halevy, 2008; Blavatskyy, 2016). Thus, it is unclear how these two paradigms are
to be merged. Something as simple as a two coin bets played at different times cannot be currently
handled well. Applying prospect theory to say the discounted payoffs would not properly take into
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account the feeling of loss triggered if the first coin delivers a negative payoff, a feeling that DIU
sustains at least until the second coin is played. The alternative, discounting the utility of each
payoff, induces unrealistic degrees of loss aversion, and is difficult to square with skewness seeking
(e.g., via non-linear probability weighting). We believe Range-DIU provides a fertile ground to
successfully address this challenge.

To our knowledge, Range-DIU is the first behavioral model that jointly captures a wide array of
observed phenomena in the broad domain of risky payoff streams. Themodel is uniquely positioned
to also make predictions involving both risk and time, hence provide a frame to interpret the results
of experiments in this immense and mostly unexplored domain.
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A Proofs

We begin with some preliminary definitions and results. For any convex set K , a function U ∶
K → ℝ is affine if for any a, b ∈ K and � ∈ [0, 1], U (�a + (1 − �)b) = �U (a) + (1 − �)U (b).
We say that a subset I of  is null if a ∼ b holds for any pair of profiles a, b such that at = bt for
all t ∉ I . The following vNM representation for mixtures spaces is standard, and hence omit the
proof.
Theorem 2 (vNM theorem for acts). A binary relation ≽ on Δ(C) satisfies A1–A3 if and only if
there exist a function u ∶  × C → ℝ such that for all a, b ∈ 

a ≽ b ⟺
∑

t∈

∑

x∈C
a(t, x)u(t, x) ≥

∑

t∈

∑

x∈C
b(t, x)u(t, x). (5)

Moreover, a function v ∶  × C → ℝ satisfies a ≽ b ⟺
∑

t∈
∑

x∈C a(t, x)v(t, x) ≥
∑

t∈
∑

x∈C b(t, x)v(t, x) if and only if there are numbers � > 0 and �(t) for t ∈  such that

v(t, x) = �u(t, x) + �(t) for all (t, x) ∈  × C.

Theorem 3 (vNM theorem for lotteries). A binary relation ≽ onΔ(C) satisfies A1–A3 if and only
if there exists a function u ∶ C → ℝ such that

p ≽ q ⟺
∑

x∈C
p(x)u(x) ≥

∑

x∈C
q(x)u(x). (6)

Moreover, a function v ∶ C → ℝ satisfies p ≽ q ⟺
∑

x∈C p(x)v(x) ≥
∑

x∈C q(x)v(x) if and only
if there are numbers � > 0 and � such that

v(x) = �u(x) + � x ∈ C.

Proof of Theorem 1. Necessity of the axioms is straightforward. We prove sufficiency by adapting
Fishburn (1970, Thm 13.2)’s proof to our time setup. Assume that A1–A5 hold. Then according
to Theorem 2 there exist a function u ∶  × C → ℝ such that (5) holds for all a, b ∈ . It is
straightforward to verify that t ∈  is null if and only if u(t, ⋅) is constant. In view of the uniqueness
part of Theorem 2 we may assume that this constant is zero. Axiom A4 implies that  is nonnull.
We will show that for any t′ ∈  such that {t ∈  ∶ t ≥ t′} is a nonnull event, the function
∑T

t=t′ u(t, ⋅) represents ≽ on Δ(C). Suppose that for some p, q ∈ Δ(C), ∑x∈C p(x)
∑T

t=t′ u(t, x) >
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∑

x∈C q(x)
∑T

t=t′ u(t, x). Let a = (p, t′) and b = (q, t′). Then
∑

t∈

∑

x∈C
a(t, x)u(t, x) >

∑

t∈

∑

x∈C
b(t, x)u(t, x).

Applying (5), we obtain a ≻ b, which, in view of A5, implies p ≻ q.
If for some p, q ∈ Δ(C),∑x∈C p(x)

∑T
t=t′ u(t, x) =

∑

x∈C q(x)
∑T

t=t′ u(t, x), we define a(t, ⋅) = p
and b(t, ⋅) = q for all t ∈  . Then

∑

t∈

∑

x∈C
a(t, x)u(t, x) =

∑

t∈

∑

x∈C
b(t, x)u(t, x),

which, in view of (5), implies a ∼ b. By the definition of ≽ on Δ(C), the latter implies p ∼ q.
We know that the event {t ∈  ∶ t ≥ 0} =  is nonnull. Take t′ ∈  , t′ ≠ 0 such that

{t ∈  ∶ t ≥ t′} is nonnull. By the above argument, we know that both∑T
t=t′ u(t, ⋅) and

∑T
t=0 u(t, ⋅)

represent ≽ on Δ(C). Thus, by the uniqueness part of Theorem 3, we conclude that there are
numbers �(t) > 0 and �(t), t ∈  such that

T
∑

t=t′
u(t, x) = �(t)

T
∑

t=0
u(t, x) + �(t).

We define u(⋅) ∶= ∑T
t=0 u(t, ⋅). By the uniqueness part of Theorem 2 we can choose �(t) = 0, t ∈ .

We also define �(0) = 1. Hence, for t < T , ∑T
i=t u(i, ⋅) = �(t)u(⋅) and

∑T
i=t+1 u(i, ⋅) = �(t + 1)u(⋅).

Subtracting the former from the latter yields

u(t, ⋅) = [�(t) − �(t + 1)]u(⋅) fort < T , (7)

and
u(T , ⋅) = �(T )u(⋅). (8)

Finally, we define s(t) = �(t)
1−�(T )

, t ∈  . A6 implies that s(t) ≤ s(t′) for t, t′ ∈  , t′ < t. Indeed,
let x ∈ C , x > 0, then by A6 (�x, t′) ≽ (�x, t) for t, t′ ∈  , t′ < t. This, In view of (7),(8) and (5),
implies the following

u(x)
∑

s≥t′
(�(s) − �(s + 1)) ≥ u(x)

∑

s≥t
(�(s) − �(s + 1)),

which in turn yields �(t′) ≥ �(t) or s(t′) ≥ s(t).
Proof of Corollary 1. Let X = (Xt ∶ Ω → ℝ)t∈ . Because all Xt are finite-valued random vari-
ables, at(X) has finite support, hence a(X) ∈ . Note that ∑x∈ℝ at(X)(x)u(x) = Eu

(
∑t

i=0Xi
) for
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each t ∈ , so that U (a) in (??) equals u(X) in (1eq.), which is equivalent to (1). Hence, by A0, if
U (⋅) represents ≽, then u(⋅) must represent ≽′.
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