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1 Introduction

Large observed differences between willingness to accept (WTA) and willingness to
pay (WTP) values (henceforth, the WTA-WTP gap or disparity) are among the most
widely discussed phenomena in behavioral economics. In this paper, we study this
disparity for uncertain prospects, which abound in finance, insurance, sports betting,
and gambling (see, e.g., Horowitz, 2006; Eisenberger and Weber| [1995)). The size of
the gap in experiments varies with the study design, the elicitation method, and the
precise definition employed. However, the gap is too large to be explained by standard
utility theory, which attributes it solely to wealth effects arising from differences in
initial positions in WTA and WTP elicitation tasks (Schmidt and Traubj 2009).

The predominant behavioral explanation of the gap is based on the asymmetric
treatment of gains and losses: the joy of gaining a prospect is smaller than the pain
of losing it (Kahneman et al., |1991; Marzilli Ericson and Fuster, 2014)). This expla-
nation was recently challenged by Chapman et al.| (2023), who find that the disparity
is at most weakly correlated with measures of loss aversion. This observation has
sparked interest in explanations based on preference imprecision or caution (Dubourg
et al., [1994; |Cubitt et al., 2015; |Cerreia-Vioglio et al., 2015, 2024; [Bayrak and Hey|,
2020). Despite differences in detail, these explanations share a common intuition:
under uncertainty about relevant trade-offs, a cautious decision maker (DM) behaves
conservatively, demanding more to sell and offering less to buy/[]

When calibrated to the data, models that rationalize the gap - whether based
on loss aversion or preference imprecision - typically ascribe the entire disparity to

only one of these two effects. Hence, they are not useful for comparing the relative

!This idea is naturally captured by representing preferences with a set of utility functions rather
than a single one. Although |Cerreia-Vioglio et al.| (2015, 2024)) develop complete-preference models,
the same underlying set-valued structure also appears in incomplete-preference frameworks (Dubra
et al., 2004; Ok et al., 2012 for risk; |Galaabaatar and Karni, 2013} Hara and Riella, [2023}; [Borie,
2023, for uncertainty). The main difference lies in how caution is interpreted. In |Cerreia-Vioglio
et al| (2015), caution is implemented as a form of pessimism in the evaluation of acts or certainty
equivalents. In incomplete-preference models, caution manifests as inertia (Bewleyl [2002): the DM
adopts a new option only if it is better under all admissible utilities or beliefs.



magnitudes of these effects, either at the aggregate or the individual level. In this
paper, we develop a model in which both effects are present and whose magnitudes
can be measured and compared.

In studies of the WTA-WTP gap, WTP is typically elicited in tasks framed as
buying a good, whereas WTA is usually elicited in tasks framed as selling a pre-
owned good. Hence, the two tasks differ in terms of the DM’s initial endowment. In
classical utility theory, this difference generates an income effect, which is the only
source of the disparity. In behavioral economics, this idea is further extended to the
endowment effect: owning a good changes the way one values it. This has led many
to view the WTA-W'TP gap as equivalent to the endowment effect.ﬂ

To eliminate differences in initial endowments, we measure WTA using short-
selling prices rather than selling prices. Taking a short-selling position in a prospect
means taking a negative position in that prospect without owning it.E| Because the
payoffs of a buyer and a short seller are exact opposites and the status quo is identical
in both cases, the WTA and WTP elicitation tasks isolate the agent’s attitude toward
gains and losses, with no endowment effect presentﬁ To illustrate these concepts, we
present a simple example.

Motivating example Consider two positions in a gamble on an uncertain event A
(e.g., whether a favorite team wins an upcoming soccer match), depicted in Figure .
In position GG, one puts x dollars in the pot; in position B, one puts y dollars. If A

(resp. A€) occurs, the person in position G (resp. B) wins the whole pot. Therefore,

2In models that distinguish these effects, evidence for the endowment effect is weaker than for
loss aversion or the WTA-WTP disparity (see[Plott and Zeiler] 2005| or [Marzilli Ericson and Fuster],
2014] for surveys). For example, [Brown| (2005)) find loss aversion not due to the loss of a good, but
to the negative net outcome of buying or selling. Similarly, Shahrabani et al.| (2008]) find a positive
correlation between short-selling prices and the WTA-WTP disparity. They test two explanations
for the disparity - the status quo and endowment effects - and find evidence in favor of the former.

3This way of interpreting WTA - from the perspective of the organizer rather than the participant
in a lottery, which is common in the literature on risk measures and insurance premiums (Biithlmann),
1970, p. 86) - is similar to the idea of taking a short position in finance.

“For a discussion of the WTA-WTP disparity under various definitions of buying and selling
prices, see Eisenberger and Weber| (1995). See also |[Lewandowski and Wozny| (2022) for a discussion
of selling versus short-selling prices.



Figure 1: There are 2 positions one can take in a gamble: B (blue) and G (green). In
position G one is betting x, while in position B one is betting y. If event A (resp. A°)
occurs, position G (resp. B) receives the sum of the bets = + y.
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the net profit of G is y if A occurs and —x otherwise. The net profits in G and B are
opposite. As a result, for a given probability of A, at most one side of the bet may
have a positive expected value.

If the DM surely prefers taking either side of a bet to abstaining (i.e., both G
and B are strictly preferred to not betting), we call such DM wuncertainty-loving.
Conversely, if the DM rejects at least one side of the bet, we call her uncertainty-
averse. In our framework, a bet may be rejected for two distinct reasons. First, the
DM may surely dislike it. Second, the DM may be uncertain about her trade-offs and,
out of caution, decline to bet. We call the DM surely uncertainty-averse if she surely
dislikes at least one side of every bet. The remaining case, when the DM is unable or
unwilling to make a definitive choice, is interpreted as preference imprecision.

Sure uncertainty aversion (sure UA) is closely related to the idea that losses loom
larger than gains. In a bet such as in Figure [I} the two positions produce exactly
opposite net payoffs. Moreover, when x = y and events A and A® are symmetric
(swapping positions leaves their attractiveness unchanged), so rejection of one implies
rejection of the other for a surely uncertainty-averse DM. Hence our notion of UA
extends the classical definition of loss aversion for risk (Kahneman and Tversky, |1979),
in which individuals reject equal-chance bets involving the same gain and loss.

To quantify UA and sure UA, we use the short-selling price (WTA) and the

buying price (WTP), along with their extensions proposed by Eisenberger and Weber



(1995); [Cubitt et al| (2015)F] Under complete preferences, WTP (resp. WTA) is
the indifference price, i.e., the price at which the DM is indifferent between buying
and not buying (or between issuing and not issuing) the ticket. Under incomplete
preferences, such an indifference price need not exist. We therefore use boundary
prices. The buying (resp. short-selling) price is the highest (lowest) price at which
the DM prefers the prospect to the status quo. The no-buying (resp. no—short-selling)
price is the lowest (highest) price at which the DM is confident that the status quo
is preferable. The boundary prices partitions the price domain into three regions: (i)
prices favoring trade, (ii) prices favoring the status quo, and (iii) prices for which the
options are incomparable. These boundaries thus convey richer information than a
simple buy/not-buy (or short-sell /no-short-sell) choices.
Contribution First, for potentially incomplete preferences over prospects (Savage
(1954) acts), we axiomatically define UA. While weaker than risk aversion, UA ex-
tends some behavioral definitions of loss aversion. Our setting is rich and allows for
objective probabilities, subjective probabilities, as well as partial or even full ambi-
guity regarding the underlying probabilities of events. Consequently, our definition
differs from many standard definitions of ambiguity or UA in several respects. In
particular, our definition uses hedging as the benchmark for neutrality rather than
subjective expected utility or probabilistically sophisticated preferences (see, e.g.,
Ghirardato and Marinacci, |2002}; |[Epstein, |1999; [Schmeidler, 1989)E]

Second, we distinguish the part of UA that the agent is certain or sure about, and
the remaining part due to preference incompleteness. Third, we extend the standard
definition of loss aversion/not loss-loving of Kahneman and Tversky (1979) from

risk and complete preferences to ambiguity and incomplete preferences. Under mild

5Placing a bet can be viewed as a transaction involving the issuance and purchase of a lottery
ticket. In the motivating example above, the DM choosing B offers the DM choosing G a ticket
paying = + y if A occurs and nothing otherwise, priced at x. The DM G accepts the bet if x does
not exceed his WTP, while the DM B is willing to issue the ticket only if z is at least her WTA.

60ur notion treats uncertainty in the same way as it treats risk and compares both to certainty,
whereas many standard definitions treat uncertainty as something layered on top of risk.



assumptions, we show the equivalence between not loss-loving and UA as well as loss
aversion and the sure part of UA.

Fourth, we show how to measure UA, the sure part of UA, and the remaining part
attributed to preference incompleteness using counterparts of indifference prices for
incomplete preferences. Unlike standard measures of ambiguity aversion, which mea-
sure e.g. the size of the set of subjective beliefs and are unobservable in consequence,
our measures are monetary and can be interpreted as uncertainty premiums, i.e., the
amount DM is willing to pay to hedge a given prospect net of its buying price.

Fifth, we prove that UA is equivalent to WTA > WTP. Thus, we provide an
axiomatization of the gap. We also define its comparative version (more uncertainty
averse agent and more uncertain prospects) to argue that the WTA-WTP disparity
is a monetary measure of UA. We do the same for the sure part of UA. We illustrate
some of our results within the Multi-Utility Multi-Prior (MUMP) model.

Sixth, we show how to decompose the WTA-WTP disparity using these mea-
sures: that is, one attributed to loss aversion (i.e. sure UA) and the other attributed
to preferences incompleteness (here interpreted as preference imprecision). This de-
composition allows one to disentangle the two channels that drive the WTA-WTP
disparity.

2 The model and the main results

Let S represent a finite set of states, or, when the context is clear, their total count.
Subsets of S are called events. The outcome set is R, with elements designating
income amounts. A prospect is a mapping from S to R, identified with a vector in
RS, F denotes the set of all prospects. We denote by A (€ R) a constant prospect
whose values are \ for all states. Prospect 0 represents the status quo.

Prospects f, g are comonotonic if for all s,t € S, f(s) > f(t) implies g(s) > g(¢).
We say that g is a perfect hedge of f if f + g = 0 for some 6 € R. We write f > g if



f(s) > g(s) forallse S, f>gif f(s) > g(s) for all s € S. For a prospect f, we also
define f := minses f(s) and f := max,cs f(s). Given a nonempty event A and real
numbers z, y, a prospect f such that f(A) =z, f(A°) =y is called a binary prospect
and denoted by (z,y; A). Our setup is that of uncertainty. Risk is a special case
where (S, S,1I) is a probability space, and if the induced probability distributions of
two prospects coincide, then the prospects are preferentially equivalent.

Let = be a binary relation on F. For f, g € F, we say that f and g are comparable
if f > gorg> f, and incomparable if neither holds, denoted f x ¢g. The relation
»= is complete if all pairs are comparable. The symmetric and asymmetric parts of =
are denoted by ~ and >, respectively. If f = 0, we say that the DM prefers f over
the status quo, and in a choice between f and 0, the DM accepts f. If f % 0, the DM
does not prefer f. If 0 > f, the DM strictly dislikes f. If preferences are complete,
f % g is equivalent to g > f. Under incomplete preferences, f % g can imply either
g >~ for g x f reflecting two possible reasons for rejecting f in a choice between
f and g: either g is strictly preferred, or f and g are incomparable. We impose the

following axioms on .
BO (Preorder): ‘= is reflexive and transitive.
B1 (Monotonicity): If f > g then f = g. If, in addition, f # g, then f > g.

B2 (Continuity): For any f € F, the sets nW:= {f € F: f = 0} and nB:= {f €
F : 0= f} are closed (with respect to the Euclidean topology on R¥).

BO and B1 are standard; B2 requires closedness, but only for the upper and lower

contour sets at 0; notably, the corresponding strict contour sets need not be open.



2.1 Boundary prices and their basic properties

For prospect f € F, we define the following four price functionals:

buying price B:F —-R  B(f)=max{# e R: f—60>=0}, (1)

no buying price B, :F - R B,(f)=min{d e R: 0> f -0}, (2
short-selling price B*: F —-R B*(f)=min{d eR:0— =0}, (3)
no short-selling price B} : F - R B)(f)=max{# e R:0=60— f}. (4)

Figure 2: The boundary prices for a binary prospect (z,y; A). The shaded area depicts
prospects f for which neither f > 0 nor 0 »= f. We also illustrate construction of the
WTA-WTP gap: B*(f) — B*(f) as well as its sure counterpart: B (f) — Bx(f).
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The above prices have the following interpretation. The buying price B(f) is the
highest price 6 at which the DM prefers f — 6 to the status quo. Similarly, the no-
buying price B, (f) is the smallest 6 at which the DM prefers the status quo to f — 6.
B*(f) and BX(f) are defined analogously, as short-selling and no short-selling prices.

Observe that, in what follows, we use a short-selling price (not a selling price),

8



when defining the WTA-WTP gap. This allows us to omit the endowment effects
resulting from the differences in the initial positions between the buying and selling
tasks. Figure [2 depicts the four prices defined for a binary prospect (x,y; A). We

state some basic properties of the prices. All proofs are in Section [7}

Lemma 1. For X € {B, B, B*, B:} and every prospect f, a unique X (f) exists and
satisfies the mean property, i.e. f < X(f) < f. The prices satisfy

Bu(f) =z B(f), B*(f) = B,(f)- ()

Moreover, if there is prospect f such that at least one of the inequalities in 18

strict, then preferences are incomplete.

Lemma 2. For any prospect f and any scalar 0, the following holds:
B (f)+B(O—f)=0 and B:i(f)+ B.(0 — f)=0. (6)

Equality @ is known in the literature as a complementary symmetry between buy-
ing and short-selling prices. It has been proven to hold for complete preferences, see
Lewandowski and Wozny| (2022) for some recent results and the literature discus-
sion. Here, we show that the complementary symmetry holds in settings allowing for
incomplete preferences and provide a counterpart of the complementary symmetry
between no buying and no short-selling prices. We refer to this result frequently later

in the paper (in particular for 6 = 0).

2.2 Uncertainty aversion and preference imprecision
We now define UA and show it axiomatizes the positive WTA-WTP gap.

Definition 1 (UA). = is uncertainty averse if f = 0 implies —f %# 0 for all
f e F\{0}.

Interpreting the definition: an uncertainty-averse DM will never prefer either side of

a bet, i.e., either f or —f, to not betting at all. The opposite behavior, where the DM

9



prefers to bet regardless of which side, will be called uncertainty-loving. Intuitively,
UA reflects a dislike of situations in which certainty is absent. We now proceed to

our first main result.

Theorem 1. = is uncertainty averse if and only if B*(f) — B(f) > 0 holds for every
fe F\{0}.

The theorem says that the strictly positive gap between short-selling and buying
prices, the WTA-WTP gap, is equivalent to UA. We also establish the neutrality
benchmark for UA. We say that the DM is uncertainty neutral if, for every prospect

f, there exists a unique scalar ¢ such that f — 6 = 0 and 6 — f >= 0.
Theorem 2. A DM is uncertainty neutral if and only if B*(f)— B(f) =0 Vf € F.

Remark 1 (Uncertainty aversion versus risk aversion). In the risk setting, UA is
weaker than risk aversion at 0. Indeed, for a prospect f with expected value 0, risk
aversion implies 0 > f and 0 = —f. While such a preference profile is consistent
with UA, it is not necessarily implied by it. Specifically, UA requires that at least one
side of the bet, f or —f, is not preferred to the status quo. Thus, it is possible for
an uncertainty-averse DM to accept prospect f while still requiring compensation to
accept the opposite prospect —flz| However, UA rules out risk neutrality at 0. For a
prospect f with expected value 0, risk neutrality implies f ~ 0 and —f ~ 0, meaning
the DM is indifferent between f, —f, and the status quo. This preference profile is

not consistent with UA.

Definition 2 (Imprecise preferences). The preferences of a DM are imprecise with
respect to prospect f if there exists 0 € R such that f + 6 »x 0. Otherwise, the DM’s

preferences are precise with respect to prospect f.

"Unlike risk aversion, UA allows for the coexistence of gambling and insurance, a behavioral
phenomenon discussed since [Friedman and Savage, [1948| and Markowitz, 1952 To illustrate, let
(z,p) denote a prospect offering a large prize x with small probability p, and nothing otherwise.
Many people are willing to pay more than its expected value, i.e., B(z,p) > xp, exhibiting risk-
loving behavior. At the same time, they may require compensation exceeding the expected value to
accept the opposite gamble (—z,p), i.e., B*(x,p) > xp, exhibiting risk-averse behavior. This pattern
can coexist under UA whenever B*(z,p) > B(z,p) > xp.

10



Preference imprecision (PI) is a local notion capturing incompleteness of preferences:
if there is a prospect with respect to which the DM is imprecise, we say that her

preferences are incomplete. Otherwise, they are complete.

Theorem 3. = is imprecise with respect to prospect f if and only if B,(f) > B(f)
and precise if and only if B,(f) = B(f). Similarly, = is imprecise with respect to
prospect — [ if and only if B*(f) > B:(f) and precise if and only if B*(f) = BX(f).

The above theorem shows that the preference imprecision is measured as the gap
between no-buying and buying prices. In fact, for a given prospect, we have two such
measures: B,(f) — B(f) as well as B*(f) — B:(f). Generally, the two gaps can differ
(for the same prospect), but later we identify cases for which they are the same.
Our objective in the next two parts is to decompose uncertainty aversion (UA)
into two components: preference imprecision and a residual component capturing the
portion of UA about which the decision maker is confident. The decomposition is
based on boundary prices, which are experimentally elicitable (see the companion
paper |Lewandowski et al., 2026|) and therefore observable. Our framework imposes
no restrictions beyond those required for the existence of the boundary prices f.
Consequently, identification of preference imprecision and the confident component of
UA is only partial, although full identification is possible in more structured models
(see Example . Reflecting this partial identification, Subsections and present
two complementary decompositions: one delivering an upper and the other a lower
bound on preference imprecision. These decompositions are based on the notions
of sure and strong UA, which correspond to alternative definitions that part of UA

about which the decision maker is confident.

11



2.3 Sure uncertainty aversion and the decomposition of the
WTA-WTP gap

Definition 3 (Sure UA). = is surely uncertainty averse if 0 3 f then 0 = —f
for all f € F\{0}.

Sure UA implies that the status quo must be strictly preferred to at least one side of

any bet. It strengthens the notion of UA.

Theorem 4. = is surely uncertainty averse if and only if B*(f) — B(f) > 0 and
B:(f) — Bu(f) > 0 for every f € F\ {0}.

Sure UA thus implies the non-negative gap between the no-short selling and no-buying
prices. As the sure UA implies UA, it also means that a short-selling price is strictly
larger than a buying price.

We now propose our first decomposition of the WTA-WTP gap. Consider an
uncertainty averse DM and some prospect f. By Theorem [4] we have B*(f) > B(f).
By definition of B* and B, we know that for all 6 in between B(f) and B*(f), the
agent will neither accept f —# nor 6 — f. We partition this set to capture two motives
(due to indecision or confidence) for why the DM rejects either one of the two betting
positions: Ply := {0 € (B(f),B*(f)): 0 x f—0}, PI_;:={6 € (B(f),B*(f)): 0 x
0 — f}, sure UA := {0 € (B(f),B*(f)): 0% f—60 A 03>60— f}. By definitions
7, the size of the above sets can be measured by the respective boundary prices
leading to:

decomp 1: B(f) ~ B(f) = B'(f) ~ B(f) + Bi(f) — Bulf) + Bulf) = B(f) (7)

.

-~

UA Pl sure UA PI;
This decomposition splits the WTA-WTP gap into three components: one capturing
the sure portion of the UA and two capturing preference imprecision with respect
to f and —f. The sure UA refers to the minimal part of the UA that cannot be

attributed to preference imprecision. Figure [2| provides a graphical representation of

12



Table 1: Preference patterns consistent with the three notions of uncertainty aversion
for any nonzero prospect f. + indicates allowed patterns; — indicates ruled-out ones.

fvs. 0 —fvs. 0 UA strong UA  sure UA

AR A X XYY
A AKRXY XY
++++++
+ 4+ ++

this decomposition. We now propose an alternative decomposition that replaces the
notion of sure UA with that of strong UA. Observe that the above decomposition
measures preference imprecision twice: for f and —f. In some models (see Section

it is sufficient to measure it only once. This leads to our second decomposition.

2.4 Strong uncertainty aversion and the second decomposition

of the WTA-WTP gap

Strong UA captures the intuition that if the DM prefers bet f then he must strictly
prefer the status quo to the opposite bet —f. This new notion lies in between UA

and sure UA.

Definition 4 (Strong UA). = is strongly uncertainty averse if f = 0 implies
0> —f forall f e F\{0}.

Theorem 5. = is strongly uncertainty averse if and only if B*(f) — B(f) > 0,
B*(f) = Bu(f) 2 0 and B;(f) — B(f) =2 0 for every f € F\ {0}.

Note that sure UA implies strong UA and strong UA implies UA — this can be inferred
directly, or through the above theorems that also characterize these three notions in
terms of boundary prices. Table [1] shows possible patterns of preferences under the

three notions of UA.
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Figure 3: Uncertainty aversion, measured by the difference between the short-selling
price and the buying price of a prospect, is decomposed into preference imprecision
(red) and sure or strong uncertainty aversion (blue).

fmin B(f) Bn(f) B:,(f) B*(f) fmax
o . —o . . -
: PI; sure UA PI_;
decomposition 1 —
Pl E strong A f
decomposltlon 2a—
: strong UAy 5 PI_;

decomposmon 2b —

Strong UA leads to the second way we may partition the interval (B(f), B*(f))
for an uncertainty averse individual. Since we have two betting positions, we define
two partitions, one for each betting position: strong UA; := {0 € (B(f), B*(f)) :
0= f— 0}, strong UA_, := {0 € (B(f),B*(f)) : 0= 60— f}. This leads to the

following two decompositions:

decomp 20 B'(f) = B(f) = B*(f) = Bu() + Bu(f) = B(f).  (8)
I‘JX strOI:grUAf I?’Irf
decomnp 2b; —B() - BN+ BN -BU). ()
Pfif strong‘,UAff

Figure 3| depicts the three possible decompositions for the case where BX(f) >
B, (f). Intuitively, decomposition 1 attributes the smallest part of the WTA-WTP
to the (sure) UA, while decompositions 2a and 2b attribute the smallest part of the

WTA-WTP to the preference imprecision. See section [5|for examples and illustration.

2.5 Binary symmetric prospects

We say that events A and A° are symmetric for 3= if, for all z,y € R, (z,y; A) =

0 < (x,y;A°) = 0, and the same implication holds when 3= is replaced by <

14



We say that a binary prospect (z,y; A) is symmetric if the events A and A€ are

symmetricf| For such bets, the consequence of Lemma [2] is the following result.

Proposition 1. For a binary symmetric prospect f = (x,y; A), the following holds

As a result, for a symmetric bet f, the gaps in PI; and PI_; are identical. This
also implies that the strong UA; and the strong UA_; gaps are the same. These
characteristics make binary symmetric prospects particularly useful in applications.
We use them to compare UA with loss aversion for risk in Section[3] The result behind
Proposition (1} is illustrated graphically in Figure 4] where for a binary symmetric bet
f = (x,y; A), its perfect hedge is f* = (y,2; A) (with § =z + y).

3 Uncertainty aversion versus loss aversion

Our definition of UA measures the difference between the buying and short selling
prices of f, that is, between the price of buying f and the price of buying —f. It is
hence naturally related to the treatment of gains and losses. We will now establish a
formal relationship between UA and loss aversion.

The standard definition of loss aversion for risk (Kahneman and Tverskyl, [1979)
states that a DM dislikes equal-chance gambles of winning or losing the same nonzero
amount. In this section, we extend this definition beyond (subjective) probability and
beyond complete preferences. We replace equal-chance gambles with binary symmet-
ric prospects. Since = generally differs from # for incomplete preferences, we obtain

two definitions instead of one.

Definition 5. = is

8The notion of binary symmetric events generalizes Ramsey’s notion of %—pmbability event (see
Parmigiani and Inouel 2009, p.78 or |Gul, (1992 Assumption 3).

15



Figure 4: Due to the symmetry of preferences with respect to the 45° line, all four
prices for a binary symmetric prospect f are equal to those for f*.

! X(FT=X(f) for X € {B,B*, B, B}

B(f)
| B,(f) f=(zy)
| . \ . . i\ , , . . outcome on A
I B()
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(i) loss averse (LA) if 0 = (x,—x; A) holds for every x € R\ {0} and any event
A such that A, A® are symmetric.

(i1) mot loss-loving (not-LL) if (x,—x; A) % 0 for every x € R\ {0} and any event
A such that A, A¢ are symmetric.

Remark 2 (Alternative notions of loss aversion). |Kahneman and Tversky (1979)

defined loss aversion for risk within prospect theory using the following condition:
r>y>0 = (y,—y;0.5) = (x,—x;0.5), (10)

where (z,—x;0.5) denotes a monetary prospect yielding x or —x with equal proba-
bility. Under the original version of prospect theory, condition is reflected in
the value function being steeper for losses than for gains. Many authors take these
properties of the value function, rather than the behavioral condition itself, as
the defining feature of loss aversion, thereby anchoring the concept more firmly within
specific parametric formulations of prospect theoryﬂ Our measure builds directly on
the original behavioral condition , specifically the case where y = 0, and replaces
the equal-probability lotteries with symmetric events to suit our ambiguity framework.

A stronger version of the condition, allowing y # 0, is discussed in Remark[3.

We say that the preferences = have subjective expected utility (SEU) representation
if there exists unique beliefs © € A(S) and a strictly increasing ratio-scale utility

u: R — R with u(0) = 0 such that f = g iff [ u( u(ds) > [qu(g(s))p(ds).

Proposition 2. Assume = have SEU representation with beliefs yu and utility uw. Then
all of the following are equivalent: UA, sure UA, strong UA, LA, not-LL. Moreover

9For example Wakker and Tversky| (1993) offers a behavioral foundation that leads to the value
function being steeper for losses than for gains under cumulative version of prospect theory. |Schmidt,
and Zank] (2005)) propose an alternative behavioral measure of loss aversion for the original prospect

theory. [Kébberling and Wakker| (2005) define an index of loss aversion as A = w based

lim,_, 4 v'(x)’
on the local curvature of the value function near the reference point. |Abdellaoui et al.| (2007)
propose a parameter-free method for measuring loss aversion under prospect theory, and [Abdellaoui
et al| (2016)) extend this approach to settings involving ambiguity. More recently, |Alaoui and Penta)
(2025) decompose the utility function under expected utility into two components: one capturing
the marginal rate of substitution, and the other reflecting attitudes toward risk and losses.
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= 1s uncertainty neutral if and only if u is odd and uncertainty averse if and only if

—u(x) > u(—x) holds for all x # 0.

Clearly, under complete preferences different definitions of UA coincide. The same
is true for loss aversion and not loss-loving. Interestingly, the proposition establishes
that in the class of SEU preferences, UA is equivalent to loss aversion. In particular,
a DM with an odd utility function is uncertainty neutral though not necessarily risk

neutral. For preferences outside SEU, UA is more restrictive than loss aversion.
Theorem 6. The following hold:

(i) If = is uncertainty averse, then it is not loss-loving.

(i) If = is surely uncertainty averse, then it is loss averse.

The reverse implications may not hold in general. Clearly, LA provides restrictions
on preferences for binary symmetric prospects only. This, in general, is too weak
to allow for extensions over arbitrary prospects. However, for preferences defined
over Anscombe—Aumann acts, there exists an additional assumption allowing one to
obtain such an extension and hence imply UA from loss aversion. This assumption
is an incomplete-preferences version of the classical notion of UA due to [Schmeidler
(1989)). To state it, we extend the set of prospects (only in this section) to F = A(X)?,
where X is a real interval. A Savage act in this set is represented by an act f such
that for each state s there exists = € R such that f(s) = d,. We call such acts purely
subjective. An act f is constant if f(s) = p for any s € S and some p € A(X). Given
preferences = over A(X)®, we define preferences over A(X), denoted by 3=, as follows:
p=q < f =g, where f(s) = p and g(s) = ¢ for each s € S. We now state an

axiom similar to |[Schmeidler| (1989) UA, but modified to incomplete preferences.

Definition 6 (Schmeidler uncertainty aversion: SUA). For any two purely subjective

acts f,g, if f A g then 3f + 39 = g.
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Under SUA the DM prefers mixing. This allows us to extend loss aversion (not

loss-loving) from binary symmetric prospects to the domain of purely subjective acts.
Theorem 7. Let 3= be a preorder on A(X)5.
(i) If f(s)# g(s) for all s € S implies f # g, then SUA and not-LL imply UA.
(i) If f(s)>=g(s) for all s € S implies f > g, then SUA and LA imply sure UA.

Theorem [7] shows that, under the additional monotonicity condition and Schmeidler
UA, not-LL implies UA, and LA implies sure UA. Combined with Theorem [6] this
yields the equivalence between not-LL and UA, and between LA and sure UA, con-
firming that our notion of UA extends behavioral measures of loss aversion within
this class of preferences. The following example shows how UA i.e. the gap, is driven

by LA and SUA under Choquet Expected Utility (CEU) (Schmeidler] 1989)).

Example 1. Consider a CEU model with piecewise-linear utility u (equal to = for
gains and Ax for losses, A > 0) and capacity v. Here, SUA reflects the subadditivity of
v, and LA is captured by A > 1. For a binary prospect f = (1,0; A) with ) # A C S,

one obtains

v(A)(1 = B(f)) + M1 = v(A)(=B(f)) =0

v(A)B(f) + A1 = v(A9))(B(f) =1) =0
v(4) _ v(A%)
(A)+ M1 —v(A)  v(A°) + A1 —v(A9))

and so B*(f)—B(f)=1- -

If X =1 (loss neutrality), the gap reduces to 1 — v(A) — v(A°), the uncertainty-
aversion indez of |Dow and da Costa Werlang (1992) based on SUA. If v is self-
conjugate (Schmeidler-uncertainty neutrality), the gap depends only on \; if f is
additionally a symmetric prospect, the gap equals (A —1)/(A+ 1).
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4 WTA-WTP as an uncertainty premium and its
comparative statics

In the literature, the WTA-W'TP gap is often considered a behavioral phenomenon
that should be rationalized by the asymmetric treatment of gains and losses, pref-
erence imprecision, caution, or the endowment effect. We now formalize two new
interpretations of the WTA-W'TP disparity as defined in our paper. Recall that f*
is a perfect hedge of f if f* =6 — f for some 0 € R.

First, consider f and its buying price B(f). By definition, f — B(f) = 0, meaning
that after purchase the DM faces the prospect f — B(f). Now consider its perfect
hedge with 6 = 0, that is, B(f) — f. By UA, B(f) — f %# 0. This relation implies
that some monetary amount must be added to B(f) — f to make it acceptable. Let
the smallest such amount be ¢, so that ¢ + B(f) — f = 0. By definition, B*(f) =
¢+ B(f). Hence, the WTA-WTP gap is exactly ¢, the smallest net amount required
to compensate for the uncertainty faced after purchasing f (i.e. f net of its buying
price). In other words, the WTA-WTP gap can be interpreted as an uncertainty
premium for f, i.e. the minimal price to short-sell (or hedge) f — B(f). Formally,
this intuition yields formula , a simple consequence of Lemma , in the following

proposition:
Proposition 3. For any number 6 we have

B*(f) = B(f) = B*(f = B(f)), (11)
=0—-B(0—f)—B(f) (12)

Second, one can also interpret the WTA-WTP gap in terms of perfect hedges. For
some sure amount 6, consider f and its perfect hedge f* = 6 — f. Taking each
of these prospects individually entails facing uncertainty, but together they remove
uncertainty and guarantee #. The gap measures the difference between (sure amount)

6 and (separate) buying prices of f and f*. This leads to expression (12|, which
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highlights the WTA-WTP gap as a premium for the lack of certainty, now seen from
the perspective of both f and its perfect hedge f*.

It the remaining subsections, we show the comparative statics results for the
WTA-WTP gap: between individuals, between prospects and between sources of
uncertainty. These results further justify WTA-WTP as a monetary measure of UA

with the intuitive interpretation as an uncertainty premium.

4.1 More uncertainty averse individual

We start by defining across-individual comparison of UA and of sure UA, as captured
by the respective price disparities. Formally, let =; be a preference relation of agent
t. Similarly, we denote by B;, B}, B,;, B}, the buying, short-selling, no-buying and

no-short-selling price of an individual 7, respectively.

Definition 7. =, is more UA than = if for every f € F\ {0} and some ¢ € R:
(f710 and e—f3>10) = FER: (f =830 and §+e— f = 0).

=1 is more surely UA than =5 if for every f € F\ {0} and some € € R:
(0¢2f and 0>;26—f) = d0eR: (Oklf—d and 0>;15—|—e—f).

Theorem 8. For any f € F\ {0}:
(i1) =1 is more surely UA than =s iff Bi,(f) — Bui(f) > B!5(f) — Bua(f).

Observe that Bi(f) is not necessarily higher than Bj(f), nor is Bs(f) necessarily
higher than B;(f). This follows directly from the definition, noting that ¢ need not
be positive. A more uncertainty-averse individual will exhibit a larger WTA-WTP
gap than a less uncertainty-averse one. The above result together with Theorem
suggests a natural way to define UA: a DM is uncertainty-averse if her preferences
exhibit more UA than those of an uncertainty-neutral DM. This reinforces the WTA-

WTP gap as a measure of UA and highlights that its magnitude reflects the degree of
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UA across individuals. The counterpart to this theorem concerns the measurement

of preference imprecision.

Definition 8. =1 is more imprecise wrt f than = if for every f € F\ {0} and
some 6 € R: (f =10 and 0 = f—|—9) = Jd0eR: (f+(5 =90 and 0 =, f—|—5+9).

Theorem 9. For any f € F \ {0}, =1 is more imprecise wrt f than =5 iff

Bu(f) = Bi(f) = Bpa(f) — Ba(/f)-

Lemma [2| implies B*(f) = —B(—f) and B}(f) = —B,(—f). Hence an immediate

Corollary to Theorem [9]is that »=; is more imprecise wrt prospect — f than =5 iff

Bi(f) = Bu(f) = B3(f) = Buo(f),  VfeF\{0}.

4.2 More uncertain prospects

We now propose a notion of “more uncertain prospects” using only information en-
coded in preferences. Given two prospects f and g, we define g to be more uncertain
than f if g — f is a nonconstant prospect comonotonic to f. We say that f (strongly)
uncertainty-dominates g if g is more uncertain than f and g — f # 0 (respectively,
g— [ #0). Finally, we say that = is monotonic with respect to (strong) uncertainty-

dominance if [ = g whenever f (strongly) uncertainty-dominates g.

Theorem 10. If g is more uncertain than f, then

B*(f) - B(f) < B*(9) — B(g), (13)
and B, (f) — Bu(f) < B(9) — Bn(9), (14)

and this statement is implied by each of the following two sets of conditions:
(1) = satisfies sure UA and is monotonic with respect to uncertainty-dominance,

(i1) = satisfies UA and is monotonic with respect to strong uncertainty-dominance.
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In words, if an agent dislikes prospects that are uncertainty-dominated, the WTA—
WTP gap for such a prospect becomes larger, indicating that the agent demands a
higher uncertainty premium as a compensation. Note that uncertainty dominance
implies neither B(f) > B(g) nor B*(f) < B*(g). Although such inequalities may

hold in particular cases, in general the entire WTA-W'TP gap captures the UA.

Remark 3 (A stronger version of loss aversion). Motivated by the original condition
in | Kahneman and Tversky (1979), we define a stronger version of loss aversion
as follows: for all x > y > 0 and all events A such that A and A¢ are symmetric,
(y, —y; A) > (x,—x; A). This condition is implied by LA together with the strict ver-
siol"Y] of monotonicity with respect to strong uncertainty-dominance. Indeed, fix any
event A such that A, A¢ are symmetric, any x >y > 0, and set € :==x —y > 0. Then
(y, —y; A) is comonotonic with (e, —e; A) (with the constant act when y = 0 being
comonotonic with any act). By LA, (e,—e; A) < 0, hence (¢, —€; A) % 0. Therefore,
(y, —y; A) strongly uncertainty-dominates (x,—z;A) = (y,—y; A) + (e, —€; A). By
the strict version of monotonicity with respect to strong uncertainty-dominance, we

conclude that (y, —y; A) = (z, —x; A).

4.3 The Ellsberg preferences and more uncertain source

Uncertainty dominance captures both hedging behavior and greater variability in
outcomes. However, we have not yet addressed source dependence (see, e.g., [Baillon
et al., 2025), one of the crucial aspects of ambiguity. To compare gambles that
depend on different sources, we introduce the following property. Formally, a source
is an algebra of events. For simplicity, we focus on binary partitions of the state space
(E, E°), where E is a nonempty proper subset of S and £ = S\ E. We say that
(E, E¢) dominates (F, F°) if the following condition holds for all payoffs x > y:

(z,y;E) = (x,y; F), and (z,y; E°) = (z,y; F°). (15)

10That is, replacing weak with strict preference in the definition.
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To illustrate this concept, consider the classic single-urn Ellsberg paradox. An
urn contains 30 black balls and 60 red and white balls in unknown proportions. A
bet on an event A pays $1 if A occurs and $0 otherwise. Let event E denote drawing
a black ball, and event F' denote drawing a red ball. The standard pattern observed
in the Ellsberg experiment consists of a preference for betting on E over F', and on

E° over F°. Hence, (E, E°) dominates (F, F°).

Theorem 11. If (E, E°) dominates (F, F°), then the following holds for all x >y

B*(z,y; E) — B(z,y; E) < B*(z,y; F) — B(z,y; F), (16)

and B (2,y; E) — Bu(z,y; E) < By (x,y; F) — Ba(z,y; F). (17)

This again highlights that the WTA-WTP gap is an appropriate measure of UA

induced by source preferences.

5 WTA-WTP disparity in the MUMP model

We illustrate our results using the multi-utility multi-prior (MUMP) model (see
Galaabaatar and Karni, 2013 [Hara and Riellal [2023; Borie, 2023). MUMP is more
specific than our setting, yet general enough to capture preference imprecision and
UA at the same time. We follow Hara and Riella| (2023) and assume in this section
that the outcome set is X = [a, b] for some a,b € R with a < 0 < b and that all the

discussed properties hold on X rather than on R.E]

Definition 9 (MUMP). = on F has a MUMP representation if there exist a compact
set U of continuous strictly increasing real-maps on X and a compact conver set 11"

for every u € U, of probability measures on S such that for each f,g € F,

frg = /SU(f)duz /SU(9)du for every (u,u) € ®. (18)

HUMUMP was first formulated in the framework of |[Anscombe and Aumann| (1963, where acts are
defined as A(X)®, with A(X) representing the set of probability measures on X and S a finite set
of states. In this paper, we restate MUMP within the |Savage| (1954) framework, using only AA-acts
with degenerate lotteries, i.e., Dirac delta measures from A(X).
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where ® = {(pw,u) : weld, pell"}.

MUMP contains several important special cases. Single-utility multi-prior (SUMP
model of Bewley uncertainty), arises if there is only one utility in the set U F_ZI Multi-
utility single-prior (MUSP) is when the set of priors II contains only one element
and I1* = II for all uw € Y. Finally, the case with a single utility and a single prior,
corresponds to the Subjective Expected Utility model.

We illustrate our results in the MUMP class. The buying and short-selling prices
of f for a “model” (u,u) € ®, denoted by B, .(f) and B}, ,(f), are implicitly defined
by

> uls)u(f(s) = Buulf)) =0, (19)

SES

> w(s)u(B;,(f) = £(s)) = 0. (20)

seS
Proposition 4. Suppose = has a MUMP representation with the set of priors and
utilities ®. Then for any f € F, we have

B(f) = ming,ues Buu(f), B, (f) = max(,uyes Byuu(f);

B (f) = minguee By, (f),  B*(f) = maxuwee B, (f)-
Proposition [4 shows that under MUMP, the boundary prices correspond to the most
optimistic and most pessimistic values across all “models” in . Note that by def-
inition, B(f) represents the maximum price the DM is willing to pay for f. Since
MUMP requires that f = 0 if and only if the subjective expected utility of f exceeds
that of 0 for each model in @, it follows that B(f) must be the minimum buying
price across all models in ®. A similar interpretation holds for the other three prices.
Finally, the gaps between the respective prices (e.g., WTA-WTP) can be interpreted
as the monetary measure of the size of the set & when sampled at prospect f. We

now present two numerical examples. The first illustrates two ways of rationalizing a

12T the context of buying and short-selling prices, where one alternative is always a deterministic
status quo, the SUMP model is equivalent to the two-fold multiplier concordant preferences model
of [Echenique et al.| (2022]).

25



given price data set, as well as the distinction between sure and strong UA.

Example 2. Let f = (10,0; A) be a symmetric prospect, and consider an individ-
ual reporting the following indifference prices: B(f) = 2.39, B,(f) = 4.05, BX(f) =
5.95, B*(f) = 7.61. The two UA decompositions are given by:

5.22 (UA) = 1.90 (sure UA) + 332 (PI,+ PLy) (21)
522 (UA) = 3.56 (strong UA; = strong UA_;) + 1.66 (Pl, =Pl ;) (22)

Leta < 0 < b. We assume that the preference relation = has a MUMP representation
with the set of utilities U and sets of priors 11" for each w € U. For given a, A € Ry,

the utilities uq  : [a,b] = R in U are given by:

x® forxz >0,

—A(—z)* foraz <O.

Ua () =

We denote by 1Y% the set of probabilities p(A) for p € 1. For a binary gamble
(x,y; A), straightforward calculations yield the indifference prices for each u € U and
prior 6 € 11% :

g1/
Gl + ((1 — 9)\)1/e’

(9/\)1/a
46,00 = .
(ON)/o + (1 — g)1/e

B@,oa,x\(f) = Po,a\T + (1 - p9,o¢,>\)ya where Po.ax =

By ox(f) = @o.apz + (1 — qoan)y, where

Note that different 0’s capture preference imprecision in belief, while different a’s
and \’s capture imprecision in taste. A MUMP model is specified by the set of
triples (0, A\, ), which defines the utilities and priors in the set ®. Consider two
such models: M1 with (0, \,a) € {(0.4,2.25,1.05),(0.6,2.25,1.05)}, and M2 with
(0, )\, ) € {(0.5,1.50,1.05), (0.5,2.25,0.70)}. Note that M1 is a SUMP model, while
M2 is a MUSP model. The indifference curves of the wutilities at 0 in each of the
models are graphically presented in Figure [3,

Table[q shows that in M1, the WTA-WTP gap for each individual utility function

1s the same, equal to 3.56. In this case, the imprecision is entirely due to uncertainty
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Figure 5: Indifference curves of the utilities in Model 1 (left panel) and Model 2 (right
panel). The curves show the same UA, strong UA, and sure UA generated either by
imprecision in belief or imprecision in taste.
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about the prior, and equals 5.22 — 3.56 = 1.66, as captured by decomposition . In
contrast, in M2, the maximal WTA-WTP gap for individual utility functions equals
5.22, capturing the whole UA, while the minimal gap is 1.91, reflecting sure UA. Here,
the imprecision is solely due to uncertainty about taste, and equals 5.22 — 1.91 =
3.31, as captured by decomposition . In summary, in this example strong UA
1s more appropriate for measuring the “sure” part of UA in the SUMP model, while
sure UA is more relevant for the MUSP model. Without knowing the true model
family, decomposition provides an upper bound on preference imprecision, while

decomposition provides a lower bound.

Table 2: The same UA, sure UA, and strong UA generated in two different models.

model (0, X, a)’s Borxa Bjr, Bira— Bore UA  sure UA  strong UA

0.4,2.25,1.05) 2.39  5.95 3.56

( )

ML (06,225, 1.05) 405 7.61 3.56 522 191 3.56
(0.5,1.50,1.05)  4.05  5.95 1.91

M2 (05,2.25,070) 239 7.61 5.22 5.22 191 3.56
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Our second example is a MUSP model with utility functions based on Kd&szegi and
Rabin| (2006) preferences as specified in |(O’Donoghue and Sprenger| (2018). The only

source of imprecision is the location of a reference point.

Example 3. Given a reference point r € R and two parameters n,\ > 0 let u(-|r) :

R — R be

r+nlx—r) ifz>r,
up(z) =
rH+nANz—1r) ifz<r

Let f = (x,y; A) be a binary symmetric bet where x > y. Let n,\ > 0 be given and
w(A) = 0.5. For a,b € R such that a < b we assume that U = {u, : r € [a,b]}.

Buying and short-selling prices of f for an individual utility w, are given by:

B(f)_l’+y+77(x—r)+n)\(y—r)+ % if r <0,

' B 2 )\ 2nr .
LA 2+Z+m if r=>0.
B*(f>_:c+y+77(y+r)+n)\(x—|—r)_ 2+277Tnk if r <0,
" B 2+7]+7])\ 2nAr Zf?”>0
2+n+nA = =

We consider WTA and WTP as functions of r for x = 200, y = =50, n =2, A =2
and r € [—50,100]. We thus have B.(f) = 43.75 + 0.25|r|, BX(f) = 106.25 — 0.25|r|,
and B*(f) = B(f) = max,cp_soao0[B:(f) — Bo(f)] = Bi(f) — Bolf) = 62.5, Bi(f) —
By, (f) = min,¢_50,100 [ B (f) — Br(f)] = Bioo(f) — Bioo(f) = 12.5. Hence, the entire
gap of 62.5 is divided into sure UA (12.5) and preference imprecision (50).

6 Discussion and concluding remarks

Cautious expected utility Cerreia-Vioglio et al. (2024) propose an explanation of
the WTA-WTP gap based on caution. Their approach differs from ours in several re-
spects. First, they discuss the WTA-W'TP disparity in the context of the endowment
effect and therefore treat WTA as the selling price of an initially owned object. How-

ever, under their assumption that the (stochastic) status quo serves as the reference
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point, there is no difference between the selling and short-selling prices. Second, our
domain consists of prospects (Savage acts mapping states to payoffs), whereas their
domain consists of lotteries over bundles. We can therefore model ambiguity, while
their model captures trade-offs between goods in a risk setting. Third, our approach
is model—independentf_g] whereas |Cerreia-Vioglio et al.| (2024)) derive the existence of
the WTA-WTP gap and loss aversion for risk from their (symmetric) cautious utility
representation. By contrast, we characterize the WTA-WTP gap and loss aversion
axiomatically. Finally, while |Cerreia-Vioglio et al. (2024) show that loss aversion and
the WTA-WTP gap are not necessarily related (neither implies the other, even under
cautious expected utility), in our setting the WTA-WTP gap implies loss aversion,

but the reverse implication requires additional structure and assumptions.

WTA-WTP disparity in the cautious completion of the MUMP model
Assume = has a MUMP representation with the set of priors and utilities is ®. We
may consider a cautious completion of »= denoted by »=* on F defined as follows: for
any f,g € F, f =" g <= mingumeou " ([gu(f)dp) > mingweo v (f5ulg)du) .

Hara and Riellal (2023 EI suggests the following interpretation: »= represents choices
that can be made with certainty, while >=* represents forced choices that are made even
if the DM is not confident. Under »=* we have the following observation for any f € F:
B(f) = Bu(f) = mingueo Buu(f) and B*(f) = Bi(f) = maxqen By, (f). The

above is a simple counterpart of Proposition 4| for =*.

Correlation between WTA and WTP and between the WTA-WTP gap
and loss aversion. Recently, Chapman et al| (2023) show that WTA and WTP
are uncorrelated and that the disparity between them is, at best, only weakly related
to loss aversion. These findings challenge the view that loss aversion is the primary ex-

planation for the WTA-WTP disparity. Our framework provides tools to re-examine

I3For example, the definitions of short-selling and buying prices are robust to changes in reference-
point determination rules (Lewandowski and Woznyy, [2022)).
14Gee also |Gilboa et al.| (2010).
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these results using alternative measures of WTA and loss aversion. Such empirical
analysis is conducted in a companion paper (Lewandowski et al., |2026). That paper
replicates the finding of no correlation between WTA and WTP and, in addition,
documents a positive correlation between the WTA-WTP gap, interpreted as un-
certainty aversion (UA), and our measure of loss aversion, namely sure uncertainty

aversion.

Decomposition and drivers of the WTA-WTP gap. The companion paper
(Lewandowski et al., 2026)) also investigates the decomposition of the WTA-WTP
gap and its underlying drivers. Buying and no-buying prices (and analogously, short-
selling and no-short-selling prices) are elicited using a modified multiple price list
(MPL) procedure proposed by (Cubitt et al.| (2015)) (see also |Agranov and Ortoleva,
2025)). Prices are listed in ascending order across rows, and for each price subjects
choose among three options: I certainly would buy (short-sell), I am not sure, and [
certainly would not buy (short-sell). The switching point away from the first option
defines the buying (or short-selling) price, while the switching point away from the
third option defines the no-buying (or no-short-selling) price.

Using these elicited boundary prices for symmetric prospects under risk, partial
uncertainty, and full ignorance, the companion paper reports three main findings.
First, the WTA-WTP gap is positive for the vast majority of subjects. Second,
preference imprecision accounts for a substantial share of the gap, ranging from 34%
to 59%, corresponding to the lower and upper bounds implied by the decompositions
in (), (@), and (7). Third, subjects cluster into three broad groups according to
the primary driver of the WTA-WTP gap: (i) no preference imprecision, with the
entire gap driven by sure or strong UA; (ii) a combination of sure or strong UA and
preference imprecision; and (iii) predominantly preference imprecision. Many subjects
in the third group exhibit negative sure UA (capturing sure uncertainty loving), yet

display a positive overall UA due to substantial preference imprecision. We refer the
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reader to |Lewandowski et al. (2026]) for further results and discussion.

7 Proofs

Proof of Lemma Take any f € F. We prove all statements for B(f). The
remaining cases are proved similar. We first show existence. If f = 6* for some
0* € R then by BO-B1 B(f) = 6* = f = f. Assume that f is nonconstant and
define: B(f) = {0 e R: f—60 =0} A={ge F:9g=/f-0,0 R}
A={geF:g=f—0, 0ecB(f)} We first show that B(f) is nonempty. Indeed
it contains f: f— f > 0and f # f, which, in view of B1, implies f — f > 0. Hence,
f € B(f). We now show that B(f) is bounded from above. Indeed since f — ¢ <0,
f#6, for 8 > f, soby B1 0= f— 6 which implies that f — 0 % 0. So B(f) does
not contain any 6 > f. We next show that B(f) is closed. A’ is the intersection of A,
which is closed, and nW, which is also closed by B2. So A’ is also closed. Define a
function v : R — F by v(0) = f — 6. Note that ~ is a continuous function. Hence a
preimagine of any closed set is closed. Note that a preimage of A" is B(f), and since
the former is closed, the latter must also be. We have shown that B(f) is a nonempty
and closed set bounded from above. So B(f) contains its maximum, which proves
that B(f) exists. It is also unique by monotonicity.

We now prove that B(f) € [f, f]. We have already shown that f € B(f) so by the
definition of the latter B(f) > f. Now observe that f — f <0, f+# f,so Bl implies
that 0 = f — f. On the other hand f — B(f) = 0. By BO, f — B(f) = f — f. By B1
we must have f > B(f) which finishes the proof of (i).

We now show B, (f) > B(f). By definition f — B(f) %= 0 and 0 = f — B,(f). So by
BO, f — B(f) = f — Ba(f). By BL we have B, (/) > B(J).

We now prove the last statement. Suppose that for some prospect f one of the
inequalities in are strict, say B, (f) > B(f). To show that preferences are incom-

plete, it suffices to show that there is a pair of noncomparable prospects. Take § € R

31



such that B, (f) > 6 > B(f). By the definition of B(f), f — 6 % 0. By the definition
of B,(f),0% f—60. So0and f — @ are not comparable and = is incomplete.
Proof of Lemma [2] We show that for X € {B*, B, B, B,,} it holds: X (f + \) =
X(f)+ Aor any A € R, f € F. We show it for X = B. The rest is analogous:

B(f+A)=max{deR: f+A—0>0}=A+max{d e R: f—0 =0}
Moreover, for all f € F, the following holds: B(—f) = —B*(f). Indeed:

—B(—f) = —max{feR:—f—-0>0} =min{-0cR:—-0—f=0}=
=min{# e R: ¢ — f = 0} = B*(f).

Hence B*(f) = —B(—f) = 0 — B(# — f) and thus the first equation of (6] holds.

Similarly, the second equation holds because B, is translation invariant and, for all
f€F, Bu(=f) = =B(f)

Proof of Theorem Suppose that UA holds. By the definition of B, for any
nonzero prospect f, f — B(f) %= 0. UA implies that B(f) — f % 0, which in view
of the definition of B* implies that B(f) < B*(f). Now assume that B*(f) > B(f)
for some nonzero prospect f such that f > 0. We must prove that —f % 0. By the
definition of B and in view of the monotonicity of =, we have B(f) > 0 and thus
B*(f) > 0. From the definition of B*, we obtain that —f % 0.

Proof of Theorem We only prove the first part, as the second part follows similar
reasoning. Suppose that the DM is imprecise with respect to f. Then there is a § € R
such that f+6 % 0 and 0 % f + 0. By the definition of B, —0 > B(f). Similarly,
by the definition of B,, B,(f) > —0. It follows that B,(f) > B(f). Similarly, if
B,.(f) > B(f) holds for some prospect f, take § € R such that B, (f) > —0 > B(f).
By the definition of B and B,,, it holds: f+ 60 % 0 and 0 % f + 6.

Proof of Theorem We first prove the = part. Assume that sure UA holds and
suppose, by way of contradiction, that for some nonzero prospect f, B*(f) < B(f)
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or BX(f) < Bu(f). If B*(f) < B(f), then take § € R such that B*(f) < 6 < B(f).
By the definitions of B* and B, this implies that f — 6 >= 0 and # — f = 0, which
implies that 0 % f — 6 and 0 ¥ 0 — f, a contradiction to sure UA. If BX(f) < B,(f),
then take 6 € R such that B:(f) < 6 < B,(f). By the definitions of B,, and B}, we
have 0 % f—60 and 0 % 0 — f. This implies 0 ¢ f —60 and 0 % 6 — f, a contradiction
to sure UA. This finishes this part of the proof.

We now prove the < part. We assume that for any nonzero prospect f, B*(f) > B(f)
and B!(f) > B,(f). We take an arbitrary nonzero prospect f such that 0 3 f. This
means that 0 % f or f = 0. If 0 % f, then, by the definition of B,, B,(f) > 0.
Hence B(f) > 0 and B*(f) > 0, by assumption. In view of the definitions of B}
and B*, we obtain 0 »= —f and —f % 0 which implies 0 > —f. If f = 0, then, by the
definition of B, B(f) > 0, so, by assumption, B*(f) > 0 and B} (f) > 0. In view of
the definitions of B* and B}, we obtain —f % 0 and 0 = —f, which implies 0 > —f.

Proof of Theorem Suppose that strong UA holds and consider an arbitrary
nonzero prospect f. By the definition of B, f — B(f) = 0, which implies, by strong
UA, 0 = B(f) — f which means 0 = B(f) — f and B(f) — f % 0. By the definition
of B and B*, these imply B!(f) > B(f) and B*(f) > B(f). As f is arbitrary,
the same holds for —f and hence, in view of Lemma [2| (applied for # = 0), we have
—B,(f) > —B*(f) and conclude that B*(f) > B, (f). This finishes the proof of the
first part of the proposition. To prove the converse, we take an arbitrary nonzero
prospect f and assume that B (f) > B(f) and B*(f) > B(f) holds. We also assume
that f %= 0. This, by the definition of B implies that B(f) > 0. By our assumptions
it implies that B*(f) > 0 and B} (f) > 0 and, by the definitions of B* and B}, implies
that 0 = —f and —f % 0, which implies 0 = — f. This completes the proof.

Proof of Proposition Let A, A¢ be symmetric events and let x,y € R. By
the definition of B, (z — B(x,y; A),y — B(x,y; A); A) = 0. Because A, A® are sym-
metric, (y — B(z,y; A),x — B(z,y; A); A) = 0. By the definition of B, B(y,z; A) >
B(z,y; A). Repeating the same argument with B(y, z; A) instead of B(z,y; A) shows
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that B(z,y; A) > B(y,x;A), which together with the previous inequality yields
B(z,y; A) = B(y, z; A). Similarly, one can show that B, (z,y; A) = B,(y,z; A). Ap-
plying Lemma [2| (with § = x 4+ y) and the already proved part, we get B*(z,y; A) —
Bi(z,y; A) =z +y— B(y,5;A) —x —y+ Bu(y, 73 A) = By(z,y; A) — B(z,y; A).
Proof of Proposition Assume = has a SEU representation with utility u and
probability y. We first prove that if (A, A°) are symmetric events then pu(A) = 5 =
w1(A°). Indeed, by the definition of symmetric events, for any =,y € X, (x,y; A) ~
(y,x; A). By the definition of SEU, this is equivalent to p(A)u(z) + (1 — p(A))u(y) =
u(A)u(y) + (1 — p(A))u(z) or (u(x) — u(y))(2u(A) — 1) = 0, and since u is strictly
increasing, p(A) = 5. We now prove that = is loss averse if and only if u(z) < —u(—z)
for all z € X \ {0}. Take arbitrary symmetric events (A, A°) and an arbitrary x €
X \ {0}. By the definition of LA, 0 > (z,—x;A), or equivalently 0 = (z, —z;A)
and 0 % (z,—z;A). By SEU and the fact that p(A) = 3, this is equivalent to
su(z) + 2u(—x) <u(0) =0 or u(z) < —u(—z) for all z € X \ {0}.

SEU preferences are complete. Hence, LA and not-LL are equivalent and so are
different notions of uncertainty aversion: UA, strong UA and sure UA. In view of
Theorem [6] (proved below), it suffices to show that LA implies UA. Assume 3= is loss
averse and f %= 0 for some nonzero f. By SEU, [qu(f)du > 0. By loss aversion,
u(z) < —u(—=z) for all z € X \ {0} and hence [qu(—f)du < 0. By SEU —f % 0
and hence UA holds. The proof that »= is uncertainty neutral if and only if u is odd

follows similar logic and hence is omitted.

Proof of Theorem [6] Assume that = is surely uncertainty averse. It implies that
for any nonzero prospect f, 0 = f or 0 = —f. Take any x # 0 and a pair of
symmetric events (A, A°). Set f = (x,—x;A). Then —f = (—z,z;A) and by the
definition of symmetric events f ~ —f. By transitivity (B0), 0 = f < 0% —f
and f A0 < —f %# 0. Hence 0 - f <= 0 > —f and therefore 0 > f and
0> —f. Since —f = (—z,2;A) = (z, —x; A°), we have proved that 0 = (z, —z; A)

and 0 >~ (z, —z; A°). Because x and A were arbitrary, the proof of the first implication
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is completed. The proof of the second implication is similar. The only difference is

that by transitivity, if f ~ —f, then f £ 0 < —f ¥ 0.

Proof of Theorem We prove (i). First note that for any f, ¢ we must have
f ¥ gor g f: otherwise f > ¢g and ¢g > f, which by definition of > would imply
both f = g and f % ¢, a contradiction. For any purely subjective act f, let —f
be the act assigning to each state the negative of the payoff assigned by f. Then
cither f £ —f or f % —f. Suppose f A —f. By SUA, 3f + 3(—f) = —f. Recall
that the expression 1 f(s) + 2(—f(s)) denotes the constant act delivering the lottery
1f(s) + L(—f(s)) in every state. Not-LL implies L f(s) + 3(—f(s)) %0 for all s, and
by the additional monotonicity condition we obtain % f+ %(— f) # 0. We claim that
—f % 0: otherwise —f = 0 would contradict the previous conclusion or transitivity.
The symmetric case f 3 —f yields f % 0. Thus, for any f, either f % 0 or —f % 0,

completing the proof of (i). The proof of (ii) is analogous and omitted.

Proof of Theorem [8| and [9) We prove only (i) of Theorem [8} proofs of part
(ii) and Theorem |§| are analogous. For the “only if” direction, take any nonzero
prospect f. By the definitions of By and Bj, agent 1 prefers both f — B;(f) and
Bi(f) — f to the status quo. Let € := Bj(f) — Bi(f). If agent 1 is more uncertainty
averse than agent 2, then there exists § € R such that f — Bi(f) —d =2 0 and
d+ Bi(f) — f =2 0. By the definitions of By and Bj, this implies Bi(f) + 0 < By(f)
and d+ By (f) > Bs(f). Hence Bf(f)—Bi(f) > B;(f)—Ba(f). Since f was arbitrary,
this completes the “only if” part. For the “if” part, assume the antecedent. We must
show that agent 1 is more uncertainty averse than agent 2. Take any f and € € R
such that f %1 0 and € — f =1 0. By the definitions of By, Bf, we have By(f) > 0,
Bi(f) < e, hence Bf(f) — Bi(f) < e. By assumption, B3(f) — B2(f) < € (%). By
the definition of By, f — Ba(f) =2 0. Let § := Ba(f), so f — 9§ =2 0. From (x),
B3(f) = Ba(f) + (B3(f) — Ba(f)) < 0 + ¢, and by the definition of Bj this means

0+ € — f =2 0. Since f was arbitrary, the proof is complete.
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Proof of Theorem We first prove the “only if” part. Take an arbitrary prospect
f. For an UA neutral DM there is a unique scalar * such that f — 6* »= 0 and
0* — f = 0. Note that for all § > 6%,  — f = 0 by monotonicity (B1). By uniqueness
of 6, it follows that f — 6 % 0. Hence, by the definition of B, §* = B(f). Similarly,
forall @ < 6* f—0 > 0and 6 — f % 0, and hence, in view of the definition of B*,
0* = B*(f). So B*(f) — B(f) = 0. We now prove the converse. Take an arbitrary
prospect f. Define 6* := B(f). By assumption, §* = B*(f). By Lemma [l such 6*
is unique. By the definition of B and B*, it follows that f —6* = 0 and 6* — f = 0.
Furthermore, there is no other # satisfying these conditions, because for all 6 < 6*,

0 — f % 0and for all 8 > 6%, f — 0 % 0.

Proof of Theorem We need to prove that each of the two, (i) and (ii), implies
that — hold whenever ¢ is more uncertain than f. As the proofs in the two
cases, (i) and (ii), are very similar, we will proceed with one proof and highlight the
differences in the two cases. Take two prospects f, g such that g is more uncertain
than f, i.e., h := g — f is a nonconstant prospect comonotonic with f. We observe
that, for any € € R, the prospect g — B,,(f) — 0 is more uncertain than f — B, (f),
and their difference is given by g — B,,(f) — 0 — (f — B,(f)) = h — 0. Similarly, since
—¢g is more uncertain than —f whenever g is more uncertain than f, we note that,
for any 6 € R, the prospect B} (f) + 6 — g is more uncertain than B(f) — f, and
their difference is B(f) +0 — g — (B:(f) — f) = 6 — h. Hence, for 6 in the set

(0ER: h—0£0 A O—hyo0), (23)

prospect f — B,(f) uncertainty-dominates g — B, (f) — 6 and prospect B! (f) — f
uncertainty-dominates B (f) + 6 — g. Similarly, for € in the set

{(0ER: h—03%£0 A 6—h#0}, (24)

prospect f— B, (f) strongly uncertainty-dominates g— B,,(f)—6 and prospect B (f)—
f strongly uncertainty-dominates B (f)+6—g. So, for 6 in the corresponding set and
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monotonicity with respect to the corresponding dominance, uncertainty-dominance
in the case of (i) and strong-uncertainty dominance in the case of (ii), would imply
f—Bu(f) = 9— Bu(f) — 0 and B:(f) — f = B:(f) + 6 — g, which in view of the
definitions of B,,(f) and B} (f) as well as transitivity of =, yields 0 > g—B,,(f)—6 and
0 = BX(f) +6 — g. By the definitions of B,(g) and B} (g), we get B,(g9) < B,(f)+0
and B (g) > B!(f) + 0, or, after combining the two inequalities, B(g) — B,(g) >
B (f) — Bu(f). So, in order to prove that is implied by (i), respectively (ii), we
need to show that the set defined by , respectively by , is nonempty.
Similarly, we observe that for any 6 € R, prospect g — B(g) is more uncertain than
f + 60 — B(g) and their difference is given by ¢ — B(g) — (f + 0 — B(g)) = h —
6. Moreover, prospect B*(g) — g is more uncertain than B*(g) — 0 — f and their
difference is B*(g) — g — (B*(9) — 6 — f) = 6 — h. So for ¢ in the set defined by (23),
prospect f + 6 — B(g) uncertainty-dominates g — B(g) and prospect B*(g) — 0 — f
uncertainty-dominates B*(g) — g. Similarly, for 6 in the set defined by (24)), prospect
f + 0 — B(g) strongly uncertainty-dominates g — B(g) and prospect B*(g) — 0 — f
strongly uncertainty-dominates B*(g) — g. So, for € in the corresponding set and
monotonicity with respect to the corresponding dominance, uncertainty-dominance
in the case of (i) and strong-uncertainty dominance in the case of (ii), would imply
f+6—DB(g) = g— B(g) and B*(g) — 0 — f = B*(g9) — g, which in view of the
definitions of B(f) and B*(f) as well as transitivity of =, yields f + 60 — B(g) = 0
and B*(g) — 0 — f » 0. By the definitions of B(g) and B*(g), we would thus get
B(f) > B(g) — 0 and B*(f) < B*(g) — 0, or, after combining the two inequalities,
B*(g9) — B(g) > B*(f) — B(f).

So, in order to prove that is implied by (i), respectively (ii), we need to show
that the set , respectively , is nonempty. In the case (i), = satisfies sure UA.
Theorem {| implies B (h) > B,(h) and so, there is # € R such that B,(h) < 6 <
B (h). By the definitions of B} and B, 0 = h —6 and 0 = § — h, and hence we have
h—6 % 0and 8 —h % 0. This proves that the set of defined by is nonempty.
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In the case (ii), »= satisfies UA. Theorem [l| implies that B*(h) > B(h) and so, there
is # € R such that B(h) < 6 < B*(h). By the definitions of B* and B, h — 6 # 0
and 6 — h % 0. This proves that the set defined by is nonempty and finishes the

proof.

Proof of Theorem Take arbitrary two payoffs x > y and events E, F' such
that (F, E°) dominates (F,F°). Let By := B(x,y;F). By the definition of B
and in view of the dominance, (x — By,y — By; E) = (¢ — Bi,y — Bi; F) = 0.
By transitivity, (x — By,y — By; E) = 0. Hence, by the definition of B, we have
B(z,y; E) > By = B(xz,y; F) (*). Similar argument yields B(z,y; E°) > B; =
B(z,y; F°). By Lemmal[2 where 6 = x4y, we have § — B*(y, z; E°) > 6 — B*(y, x; F°)
or B*(z,y; F) > B*(xz,y; E) (**). Combining (*) and (**) gives: B*(z,y; E) —
B(z,y; F) < B*(z,y; F') — B(x,y; F'), which proves the first part of the Theorem.

Similarly, let B, := B,(z,y; E/). By the definition of B, and in view of the domi-
nance, 0 %= (x — Bu1,y — Bu; E) = (¢ — Bu1,y — Bup; F). By transitivity, 0 = (z —
Bni1,y — Bpi; F), which, taking into account the definition of B, gives B, (z,y; F') <
Bni = Bu(z,y; E) (*). Similar argument yields B, (z,y; F°) < B,1 = By(z,y; E°).
Making use of Lemma 2] with 6 = x +y, we get Bj(z,y; E) < Bi(z,y; F) (**). Com-
bining (*) and (**) gives: B (x,y; E)— By (z,y; E) < Bf(x,y; F) — B,(z, y; F'), which

completes the proof.

Proof of Proposition We only prove it for B as the rest is similar. Take an

arbitrary f € F. We can rewrite the definition of B as follows

B(f) = max {9 eR: Zu(s)u(f(s) —0)>0 forall (p,u)e @} : (25)

seS

We will prove that B(f) = 6 := ming, wyee Buu(f). Note that

> p(s)u(f(s)—0) >0 forall (u,u) € P. (26)

seS
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Hence, by (25), B(f) > 0. Suppose that ¢ > 0 and let

(0" u") = arg nin, Byu(f)- (27)

Then, by monotonicity Y o p*(s)u*(f(s) —6') < 0, but this, in view of ([25]), implies
that @ # B(f). So it must be that B(f) = 6.
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